
Implementation of a Leader-follower robot

team using iRobot Create platforms

Presented by:

Francis Hamilton

University of Cape Town

Prepared for:

Robyn A. Verrinder

Dept. of Electrical and Electronics Engineering

University of Cape Town

Cape Town, October 2015

Declaration

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and

pretend that it is one’s own.

2. I have used the IEEE convention for citation and referencing. Each contri-

bution to, and quotation in, this report from the work(s) of other people has

been attributed, and has been cited and referenced.

3. This report is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the

intention of passing it off as their own work or part thereof.

Signature: .

Francis Hamilton

Cape Town

October 14, 2015

i

Abstract

Leader-follower formation control is one of the most versatile and scalable formation

control architectures. This study iterates through the necessary steps to achieve

leader-follower formation control on a pair iRobotCreate robotic platforms through

the use of visual feedback provided by a Microsoft Kinect. Image identification and

measuring algorithms are developed to achieve the visual feedback requirements

for the selected formation controller. The entire system is accurately modelled

including the iRobot’s motion models and the sensor noise models. An EKF state

estimator is designed and shown to produce accurate states from noisy measurements

on the implemented system. A Lyapunov proven error based controller is selected

from literature and shown to drive the relative errors to zero. The entire system

is simulated and shown to accurately keep the formation amidst sensor noise. The

implementation results show the validity of the controller and state estimators with

the exception of a final error in the leader’s state in a certain formation scenario.

ii

Acknowledgements

I would like to thank my supervisor Robyn Verrinder for not only providing me with

guidance and advice through out my thesis but for always being there to help guide

me through my final year.

To my friends and room mates for always being there to provide me with enter-

tainment and support through out my university degree. I would like to personally

thank Jonathan Schoeman for lending his ever valuable Kinect for educational pur-

poses.

Finally to my family for their unwavering support and encouragement through out

my life.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables xiii

List of Symbols xiv

1 Introduction 1

1.1 Background of this study . 1

1.2 Objectives of this study . 2

1.2.1 Problems to be investigated 2

1.2.2 Significance of this study . 3

1.3 Scope and Limitations . 3

1.4 Plan of development . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Robotic Vehicles . 7

2.3 Formation Control Motivation . 9

2.4 Formation Control Architectures . 10

2.4.1 Behavioural mention artificial potentials 10

2.4.2 Virtual Structure . 11

2.5 Leader-follower . 13

2.5.1 Control Schemes . 13

iv

CONTENTS

2.5.2 State estimation and Sensors 16

2.6 Literature Conclusion . 17

3 System Overview and Design 19

3.1 System Overview . 19

3.2 Robot Operating Software . 21

3.3 System Design . 23

3.3.1 Hardware/Mechanical . 23

3.3.2 Software . 27

4 Image Processing Algorithm Design 32

4.1 Preprocessing Investigation . 33

4.2 Leader Measurement . 35

4.2.1 Landmark Measurement . 36

4.3 Final Algorithm . 38

4.4 Optimisation . 38

5 Control Design 40

5.1 System Modelling . 40

5.1.1 iRobotCreate’s Dynamics . 40

5.1.2 Leader-follower Formation Dynamics 41

5.2 Controller Selection . 41

5.3 Localisation . 43

5.3.1 Follower pose state . 44

5.3.2 Leader-follower relative state 45

6 Final Design Overview and Experimental Methodology 47

6.1 Final Design Overview . 47

6.2 Experimental Methodology . 47

6.2.1 Simulations . 49

6.2.2 Implementation . 50

7 Simulation Experiments 52

7.1 Controller . 52

7.2 State Estimators . 53

7.2.1 Follower Pose Estimators . 53

7.2.2 Leader Pose Estimator . 53

7.3 Final Control System . 53

v

CONTENTS

8 Implementation Results 54

8.1 Zero desired polar angle with stationary leader 54

8.1.1 In line start . 54

8.1.2 Angle offset start . 55

8.2 Zero desired polar angle with moving leader 55

8.2.1 In line start . 55

8.2.2 Angle offset start . 55

8.3 Non Zero desired polar angle . 58

8.3.1 φ = 10◦ with stationary leader 58

8.3.2 φ = 10◦ with moving leader 59

9 Discussion 61

9.1 Image Processing Algorithm . 61

9.2 State Estimators . 62

9.2.1 Follower’ Pose Estimate . 62

9.2.2 Relative Coordinate State’s Estimate 63

9.3 Formation Control . 63

9.4 Comparison to literature results . 64

9.5 Final System . 64

9.5.1 Fulfilment of primary objectives 64

9.5.2 Fulfilment of secondary objectives 65

10 Conclusions 66

10.1 Primary Objectives . 66

10.2 Secondary Objectives . 67

A Software Design 68

B Control 69

B.1 Motion Model Theory . 69

B.2 Sensor Model Theory . 72

B.3 Actuator and Sensor Noise Model . 73

B.3.1 State Transition Measurement 73

B.3.2 Vision Measurement of State 77

B.4 Controller Proof . 78

B.5 Kalman Filtering . 80

C Simulation Results 86

vi

CONTENTS

D Implementation Results 92

D.1 Zero desired polar angle with stationary leader 92

D.1.1 In line start . 92

D.1.2 Angle offset start . 92

D.2 Zero desired polar angle with moving leader 95

D.2.1 In line start . 95

D.2.2 Angle offset start . 95

D.3 Desired polar angle = 10 . 95

D.3.1 Stationary leader . 95

D.3.2 Moving leader . 95

References 100

vii

List of Figures

2.1 Mars Science Laboratory Curiosity Rover [9] 8

2.2 H.E.R.A.L.D system [11] . 8

2.3 Dive cycle of a glider[14] . 9

2.4 Wave glider[15] . 9

2.5 Workings of the Virtual structure . 11

3.1 Design One Setup . 24

3.2 Issue One . 24

3.3 Issue Two . 24

3.4 Improved and Final Design . 25

3.5 Landmark Design . 26

3.6 Kinect Splitter . 27

3.7 Final follower setup . 28

3.8 RGB calibration . 29

3.9 IR depth calibration . 29

3.10 RGB publishing rate . 31

3.11 Depth publishing rate . 31

4.1 Canny Edge Detection . 33

4.2 Movement of sphere . 33

viii

LIST OF FIGURES

4.3 HSV Thresholding with Morphological Operations 34

4.4 Movement of sphere . 34

4.5 Analytical explanation of xmid and xright to calculate phi and gamma 37

4.6 Landmark Measurement . 37

4.7 Improved Design . 39

5.1 Relative Coordinates . 42

6.1 Final Design Algorithm . 48

7.1 Linear leader velocity . 52

7.2 Circular leader trajectory . 52

7.3 Both state estimators for leader follower control(low noise) 53

7.4 Both state estimators for leader follower control(high noise) 53

8.1 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 56

8.2 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 56

8.3 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 57

8.4 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 57

8.5 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 60

8.6 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 60

A.1 Cosine Rule . 68

B.1 Instantaneous Center of Curvature [67] 70

B.2 Wheel Encoder [67] . 72

B.3 Absolute Wheel Encoder [67] . 72

B.4 Sensor Model . 73

B.5 Start position of the step tests . 75

ix

LIST OF FIGURES

B.6 Measuring the data . 75

B.7 Markers after step tests . 75

B.8 Error for change in position state . 76

B.9 Error for change in angular state . 76

B.10 Wheel Encoder [67] . 82

B.11 Absolute Wheel Encoder [67] . 82

C.1 Controller’s Simulink Model . 87

C.2 Linear Leader Velocity:Errors . 88

C.3 Linear Leader Velocity:Follower velocities 88

C.4 Circular Leader Trajectory:Errors . 88

C.5 Circular Leader Trajectory:Follower velocities 88

C.6 EKF high noise . 89

C.7 EKF medium noise . 89

C.8 EKF low noise . 89

C.9 UKF high noise . 89

C.10 UKF medium noise . 89

C.11 UKF low noise . 89

C.12 EKF high noise . 90

C.13 EKF medium noise . 90

C.14 EKF low noise . 90

C.15 Error in relative coordinate ρ . 91

C.16 Error in relative coordinate φ . 91

C.17 Error in relative coordinate γ . 91

D.1 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 93

D.2 Difference in Odom and Est Pose(Blue=x,Red=y) 93

x

LIST OF FIGURES

D.3 Difference in Odom and Est Pose(Black=theta) 93

D.4 Relative error from desired(Black=ρ) 93

D.5 Relative error from desired(Green=φ,Blue=γ) 93

D.6 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 94

D.7 Difference in Odom and Est Pose(Blue=x,Red=y) 94

D.8 Difference in Odom and Est Pose(Black=theta) 94

D.9 Relative error from desired(Black=ρ) 94

D.10 Relative error from desired(Green=φ,Blue=γ) 94

D.11 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 96

D.12 Difference in Odom and Est Pose(Blue=x,Red=y) 96

D.13 Difference in Odom and Est Pose(Black=theta) 96

D.14 Relative error from desired(Black=ρ) 96

D.15 Relative error from desired(Green=φ,Blue=γ) 96

D.16 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 97

D.17 Difference in Odom and Est Pose(Blue=x,Red=y) 97

D.18 Difference in Odom and Est Pose(Black=theta) 97

D.19 Relative error from desired(Black=ρ) 97

D.20 Relative error from desired(Green=φ,Blue=γ) 97

D.21 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 98

D.22 Difference in Odom and Est Pose(Blue=x,Red=y) 98

D.23 Difference in Odom and Est Pose(Black=theta) 98

D.24 Relative error from desired(Black=ρ) 98

D.25 Relative error from desired(Green=φ,Blue=γ) 98

D.26 Topview (Red=leader,Blue=Odom Pose,Green=Est Pose) 99

D.27 Difference in Odom and Est Pose(Blue=x,Red=y) 99

xi

LIST OF FIGURES

D.28 Difference in Odom and Est Pose(Black=theta) 99

D.29 Relative error from desired(Black=ρ) 99

D.30 Relative error from desired(Green=φ,Blue=γ) 99

xii

List of Tables

4.1 Canny Edge Detection Circle Detection 34

4.2 HSV Thresholding with Morphological Operations Circle Detection . 34

8.1 In line start results . 54

8.2 Angle offset start results . 55

8.3 In line start results . 58

8.4 Angle offset start results . 58

8.5 Zero Angle offset start results . 59

8.6 Zero Angle offset start results . 59

D.1 Gain Sets . 92

xiii

List of Symbols

c — Speed of light

fad — Radar A/D sampling frequency

fc — Radar centre transmit frequency

γ — Chirp rate of linear FM waveform

λ — Wavelength

τ — Pulse width

xiv

Chapter 1

Introduction

1.1 Background of this study

We as humans perform formation control on a daily basis and do not even realise it.

When we walk along a crowded pavement and there is definitive bi-directional flow

whereby each person goes with the flow rather than against it, as this would not be

optimal for travelling to their destination. Each human on that street is actually

sensing the other humans and changing his or her course based on what the others

are doing so that the flow of walking traffic is not impeded. When viewing these

types of daily occurrences the collective motion is so fluid it almost appears as if it is

one body moving but it is actually the aggregate result of each human’s individual

decision.

This decentralised approach for individuals to perform a collective goal through

their interactions is apparent in nature as well as the world of robotics. Moving in

formation has many advantages over conventional centralised systems, for example,

it can reduce the system cost, increase the robustness and efficiency of the system

while providing redundancy, reconfiguration ability and structural flexibility. For-

mation control integrates many different aspects of robotics in order to achieve the

desired functionality of the system. It not only requires control laws to keep the

formation but different types of sensors, actuators, localisation methods etc. to sup-

port the controller which often complicates the design considerably and so it is still

a very much active research topic.

Developments in the field of formation control have led to its use in search and

1

1.2. OBJECTIVES OF THIS STUDY

rescue situations [1], exploration and mapping of disaster zones such as Fukushima

[2], reduced fuel consumption in small satellite clustering [3] and almost other area

of robotics [4][5][6]. There are many different types of formation control architec-

tures which govern how agents in the system interact with one another. There are

strengths and weaknesses to each and are mainly dependant on the situation for

them to be applied in.

The leader-follower architecture, which this study is based on, is most applicable to

smalls teams of robots where no communication exists between the robots.In this for-

mation scheme robots orientate themselves relative to one or more real leaders. The

approach assumes the leader can globally position itself i.e. it forms the trajectory

of itself and thus the formation. There are some drawbacks to this architecture but

these will be explored in this study through the use of two iRobotCreate platforms

with visual feedback.

1.2 Objectives of this study

1.2.1 Problems to be investigated

The objective of this study is to iterate through all the necessary steps to implement

leader-follower formation control on a pair of iRobotCreate platforms with visual

feedback from a Microsoft Kinect.

The primary objectives can be defined more explicitly as follows:

• Development of feature identification and measurement software algorithms

• Modelling of the system

• Selection of an appropriate controller

• Development of localisation algorithms

• Simulate the final designed system

• Implement final designed system in real time

The secondary objectives are as follows:

• Design of appropriate markers for visual tracking

2

1.3. SCOPE AND LIMITATIONS

• Optimisation of the feature identification and measurement software algo-

rithms

This study will be mainly centered around the control aspect of leader-follower

formation control so as make it adaptable to particular applications. For this reason

the developed algorithms’ processing times will not be a major design constraint

but rather the efficacy of the different developed control methods being the basis

for the design.

1.2.2 Significance of this study

The objectives mentioned above will allow the study to draw conclusions and thus

make recommendations about the steps taken in order to implement the final de-

signed system. The methods and algorithms developed will help guide researchers

in any field where formation control is needed such as a pair of autonomous under-

water vehicles. The visual identification would have to be improved and modified

for applications where the control is not the center of the design.

1.3 Scope and Limitations

The scope of this project is develop all the necessary subsystems, outlined in the

Objectives above, in order to achieve leader-follower formation control. The final

system design scope and experimental testing will be constrained by the following

limitations:

1. No provided Netbooks for the iRobotCreates

There is only one Netbook for the two iRobotCreates but it was being used

by a master’s student and did not have a charger at the time. A charger was

not able to be sourced in time as it was a special type of charger plug.

2. Author’s laptop weight

The author’s laptop, ASUS G74SC, is an old gaming laptop which weighs

around 4.4kg this prevents it from being on top of the follower iRobotCreate

as it exceeds the maximum payload specifications and will cause the motion

of the robot to be unreliable.

3

1.4. PLAN OF DEVELOPMENT

3. Kinect

Due to the Mechatronics group’s Microsoft Kinect being used for a different

student’s thesis a Kinect had to be sourced outside the university. Since it

was much higher than the thesis budget one was borrowed from the author’s

friend. Thus it could not be modified at all so as to have it powered from the

iRobotCreate’s battery and not the a wall socket.

4. No aerial webcam

A webcam to monitor the motion of the iRobotCreates from above in real time

was unable to be sourced by the time of the thesis hand in.

Due to the limitations of the project the leader will not perform circular motion

and will be stationary for most of the experiments. The leader will still be able

to move but only transverse linearly and will have to be carefully pulled by hand

as the robot’s dynamics will be very different when pulled by a human hand. The

limitations also force the follower iRobotCreate to be cabled to the authors laptop

which is not on the robot due to unavailability of the Netbooks and the author’s

laptop weight. Since the follower robot had to be cabled to the author’s laptop the

cabled connection to the Kinect is not an additional problem. A major constraint

is not having an aerial webcam to monitor the robots in real time so as to have

a ground truth to compare the results against. There are quite a few limitations

imposed on the design and experimental testing but solutions will be produced in

the report as to produce the best possible design with the above constraints.

1.4 Plan of development

The report starts out with a review of the current literature available for formation

control, mainly focusing on leader-follower formation control. The review is aimed

at outlining the motivation for formation control in any robotics application and

broadly understanding the different types of formation control architectures before

focusing on the methods and problems associated with the chosen leader-follower

architecture.

Following this, the system overview is presented where the different hardware and

types of software to be used in the design are outlined and explained. The mechan-

ical and software design will be based around the system overview where it explains

the necessary steps needed in order to implement the following algorithms in the

4

1.4. PLAN OF DEVELOPMENT

design sections.

Next, the image identification and measuring algorithms will be developed to achieve

the visual feedback requirements for the controller design in the following section.

Since the control design is the main contribution of this thesis, its chapter will

be the longest and so as to make the chapter flow better the design will be pre-

sented with referencing to the relevant theory in the appendix when necessary. In

any control design certain design steps must always be followed so as to ensure the

validity of the final controller. Firstly the dynamics and parameters of the system

to be controlled must be determined through ”step test” data, these tests will show

how noisy the robots actuators and sensors are etc. Then before implementing any

control law it must first be mathematically shown that the closed loop system is

stable and performs the desired outcomes. So a controller will be chosen from the

available literature, it will be mathematically analysed and shown to be stable and

achieve formation of the system. Since any Leader Follower formation control law

requires state estimation for the pose of the mobile robots. Two state estimators

will be designed and shown mathematically to produce accurate states from noisy

measurements and actuators but only one will be chosen for the final system. The

entire system will be simulated in the computational program Matlab to further

validate the control law and then finally it will be physically implemented. Data

sets will be obtained through experiments, outlined in the experimental methodol-

ogy chapter, and will be presented in the results chapter.

Finally, the results will be discussed and conclusions will be drawn based on the

outcomes in the results compared against the objectives. Recommendations will be

made for future work on this thesis’s topic based on the conclusions drawn.

5

Chapter 2

Literature Review

2.1 Introduction

Multi-agent systems refer to a network of nodes which achieve a predetermined goal

through their interactions with one another. Formation control is a part of this

multi-agent system and is instrumental in these multiple agents keeping or switch-

ing their chosen formation goal topology. Formation control is most apparent in

nature where large numbers of animals group together to form a functional forma-

tion to provide options which which would not be available individually such as to

improve their chance of survival. Flocks and other synchronous group behaviours

such as schools of fish are both intriguing and beautiful to watch. At first glance

the motion of birds flocking appears to be one moving body as the collective motion

is so fluid but it is actually the aggregate result of all the individual birds decisions

based on its local perception of the world [7]. Much research has been developed

in the area of formation control and thus there are multiple architectures available

in the literature. One example is behaviour formation control which can be applied

to the phenomenon of the flocking of birds. The central objective of the different

architectures is to produce robust and scalable control laws that are relatively simple

on an individual basis but enable agents at the group level to perform with greater

functionality and intelligence.

This review aims to provide the reader firstly with an understanding of the cur-

rent state of robotic vehicle applications and a motivation of why formation control

improves these applications. This will be followed by an overview of the formation

control architectures other than leader-follower available in current literature. Many

6

2.2. ROBOTIC VEHICLES

of the different control schemes and approaches are common to all the architectures

so they will be grouped according to the volume of literature available for each.

Finally chosen core studies relating to the specific leader follower architecture will

be analysed and supplemented with related studies to give the reader an in depth

understanding of the different control schemes, image processing and navigation

algorithms needed to achieve formation control.

2.2 Robotic Vehicles

Robotic land vehicles are generally the most popular and are used in a range of

applications, from cleaning households to the exploration and performing of tasks

which would be impossible or too dangerous for humans. The trend is for these

robotic vehicles to be completely autonomous as compared to their remotely oper-

ated counterparts (ROVs) as they do not require constant monitoring and control

from a human operator. Robotic vehicles are not only utilised on land but also in

the air, ocean and even in space. Autonomous or unmanned aerial vehicles (UAVs)

have progressed slightly more in the field of robotics compared to that of unmanned

underwater vehicles (UUVs) due to the nature of the harsh environment they have

to navigate in.

Autonomous or Unmanned ground vehicles (UGVs) have been used to locate land-

mines in countries such as Angola where explosive remnants of war are a daily

hazard [8]. They have also been used to explore and inspect areas deemed fatal

for humans such as the Fukushima nuclear plant disaster in 2011 [2]. However, not

all applications are associated with tragedies, as UGVs have been in the frontier of

exploration such as the Mars rover Curiosity which has given new insights into the

Martian planet through the navigation of its hazardous terrain [9].

UAVs are most common in applications where areas are inaccessible by UGVs. The

terrain of these area are often full of unavoidable ground obstacles such as fallen

debris in an underground mine where it would be very difficult for the search and

rescue(SAR) ground robotic teams to navigate through [1]. SAR robotic teams are

tending towards utilising both UGVs and UAVs so in order to adapt to a variety

of situations for example using vision acquired through the UAV to improve the

UGV’s path planning [10]. An interesting and growing research area is the integra-

tion of both a UGV and UAV into one robotic platform, as shown in figure 2.2, for

7

2.2. ROBOTIC VEHICLES

Figure 2.1: Mars Science Laboratory Curiosity Rover [9]

the inspection of unsafe environments, as this combination would allow the robot a

much more thorough inspection and improved navigation of its surroundings [11].

Figure 2.2: H.E.R.A.L.D system [11]

The ocean is truly the frontier of our planet with less than 10 percent of it explored

and mapped while the rest is just referred to as the deep sea. Studying the ocean

currents and weather gives scientists a greater understanding of how our planet oper-

ates as after all it covers more than 70 percent of our planet. Up until fairly recently

most underwater vehicles were remotely operated via an umbilical cable from the

surface by a human operator [12]. However, this required a vessel on the surface of

the water while the underwater ROV was beneath, making exploring the ocean very

inefficient and expensive. Technological advancements such as using artificial blad-

ders to control the buoyancy [4] of the robot allowed UUVs to be more predominate

in ocean exploration and research. These gliders are able to autonomously navigate

the ocean’s depth, as shown in figure 2.3, collecting valuable data such as the effects

on blooming rates of phytoplankton in the Southern Ocean due to climate change

8

2.3. FORMATION CONTROL MOTIVATION

[13]. Wave glides convert the swell of the ocean into forward thrust through the use

of fins below the surface, as shown in figure 2.4, to transverse the ocean’s surface.

The Southern Ocean Carbon and Climate Observatory, in S.A, makes use of these

types of water vehicles to determine the levels of iron, gas fluxes and other properties

of the ocean’s surface layer.

Figure 2.3: Dive cycle of a glider[14] Figure 2.4: Wave glider[15]

2.3 Formation Control Motivation

The above examples of different types of robotic platforms that perform specifically

designed tasks show the need, especially autonomous vehicles, to have and architec-

ture governing how they interact with other another. Nature shows us that there

is a definite advantage to performing tasks as a decentralised coordinated group

rather than one powerful unit. A pivotal example is the reason why birds fly in a

V shaped formation, this is to do with decreasing the drag force experienced by the

group through alternating a leader to bear the majority of the work. This type of

formation behaviour has been incorporated into optimal path planning for UAVs to

decrease fuel consumption [5]. Robotic agents acting in this way improve the robust-

ness of the entire system and enable the group to achieve tasks that would otherwise

be impossible with just one agent. The advantages of incorporating formation con-

trol are apparent in any robotic system such as a group of reconnaissance robotic

agents acting in formation allows them to more accurately cover a far greater search

area. Another example of formation control is how a group of decentralised micro

quadcopters, with relatively simple hardware, to outperform a larger more power-

ful quadcopter in terms of attitude control [6]. There are numerous areas of how

9

2.4. FORMATION CONTROL ARCHITECTURES

achieving formations can improve the functionality and efficiency of multiple mobile

robotic agents, the reader is referred to an older study [16] for further examples.

2.4 Formation Control Architectures

2.4.1 Behavioural mention artificial potentials

Behaviour-based formation as mentioned earlier is most imminent in nature, studies

on flocking and schooling show that these group behaviours emerge from a combi-

nation of individuals needing to stay together yet remain a certain distance from

others. Behaviour-based control methods provide the robots with actions in reaction

to sensor data and so researchers have used these behaviours to better understand

grouping in both simulated agents and robots [17]. One of the more important

early works in the field was done by Craig Reynolds, who managed to model and

then simulate the flocking of birds at a very impressive level [7]. His work was im-

proved recently by others[18] as his simulation did not fully take into account the

motion of the animals but rather treated them like particles. In behavioural control,

several desired behaviours are encoded into each agent, and the final control laws

are derived from a weighting of these behaviours. Reynolds and others weight the

following behaviours in order of preference:

• Attraction to distant neighbours up to a maximum distance

• Repulsion from neighbours too close

• Alignment or velocity matching with neighbours

Researchers have encoded additional behaviours to enable a higher level of function-

ality such as moving-to-a-target, initial formation-keeping, and avoiding-obstacles

while maintaining formation [19][20]. There is little research into large scale be-

havioural formation control except for some simulated results regarding the opti-

misation of the encoded behaviours. One such study used convex optimization to

simulate one hundred robots forming different formations [21].

Behaviour based formations are often controlled through machine learning type

control strategies such as fuzzy logic [22][23] or neural-network [24][25] where robot

reactions are decided through reasoning of various types of qualitative behaviours

10

2.4. FORMATION CONTROL ARCHITECTURES

using fuzzy logic or through prediction using a neural network which is trained

by a database representing quantitatively the behaviours. Machine learning based

controllers are also applicable in other formation control schemes but the general

drawback of these controllers is the suffering from the local minimum problem due to

its totally reactive nature. I.e. getting trapped in front of an obstacle or wandering

indefinitely. There are algorithms that help solve this issue such as the random walk

(RW), multi-potential field (MPF) or wall following (WF) method [22]. In essence

the idea is to either generate random planar movements (RW) or to have a higher

level control action based on the distance to the goal (MPF/WF).

2.4.2 Virtual Structure

A virtual structure is a collection of particles (Robots) which maintain a semi-rigid

geometric relationship to each other and to a frame of reference [26]. The huge dis-

advantage of this method is the high bandwidth needed for communication between

the robots. The reason being is the robots will update their position based on the

virtual structure matrix they received. The concept is best illustrated in figure 2.5

Figure 2.5: Workings of the Virtual structure

The virtual structure representing the formation is controlled by the operator via the

virtual field force. This movement of the virtual structure will be communicated to

all the robots and their positions will be updated according to the virtual structure

matrix. This method of formation control can only be utilized in applications such

as space where high bandwidth communications between robots is available [27]. It

would not work in applications such as sea exploration where communication is not

always available. However, the advantage to this method is that it is powerful un-

11

2.4. FORMATION CONTROL ARCHITECTURES

der the right conditions and is relatively straight forward to implement.The virtual

structure matrix is often formed from either a specific shape where each robot is a

point in the shape [28] or through the use of a virtual leader [29] to set-up up the

desired matrix.

In [29] they use the iterative learning control (ILC) approach to tackle the forma-

tion control problem of a non-linear multi-agent system with a switching interaction

topology. They first formed a consensus based approach for generating the virtual

structure matrix from the relative positions of the robots to the virtual leader. A

consensus is reached when all agents in the system agree upon some predefined

quantities of interest, by this definition all formation control architectures are con-

sensus based. In order to use ILC their defined consensus problem must be laid out

over finite time intervals to which they used a distributed D-type iterative learning

scheme. The reader is referred to chapter 9 of [30] for a good explanation of ILC but

the general idea is that the next input signal is computed based on the current error

so that the following error is reduced. They showed, in simulations only, that over a

certain number of finite time iterations the formation is kept and can be switched.

Study [29] is a good example of how ILC can be incorporated into formation control

schemes.

Study [28] makes use of a partial behavioural based approach but for the virtual

structure method through using a two layer control scheme. The first layer is re-

sponsible for the guidance of the UAVs in the ellipse shaped virtual structure. It

ensures the virtual structure reaches its destination and bypasses encountered ob-

stacles by either changing the virtual structure shape or the heading. The second

layer ensures each UAV stays within the elliptical shape in space and maintains

a set minimum separation distance from the other UAVs. Each control layer uses

model predictive control (MPC) where by both layers’ responsibilities are weighted

in a cost function to determine all control actions taken. The authors show how the

shape of the virtual structure does not have to be elliptical but it is the easiest to

manipulate. A promising improvement of their work would be to allow the virtual

structure to be separated in two to improve bypassing obstacles.

The above studies and most others use what is defined as rigid-based formation

scheme where by each agent’s position is described by a recti-linear relative sepa-

ration to the virtual leader in the matrix, this recti-linear approach is by far the

most common and easiest to understand. The contrast to this rigid-based forma-

12

2.5. LEADER-FOLLOWER

tion is called a flexible formation scheme whereby the agent’s position is defined

by a curvilinear relative separation to the virtual leader. A flexible formation is

described through the curvature, hence curvilinear, of the group’s trajectory which

allows the distances between the robots to differ slightly during turning thus provid-

ing a much better motion manoeuvrability [31]. An applicable study [32], shows how

non-holonomic wheeled robots can be instead described through a flexible virtual

structure formation and achieve better results in terms of manoeuvrability whilst

carrying out their navigation task.

2.5 Leader-follower

In this formation scheme robots orientate themselves relative to one or more real

leaders. This type of formation scheme is most applicable to groups of up to four

or five agents as referencing to one leader with a lot of followers to keep in mind

is quite cumbersome. The approach assumes the leader can globally position itself

i.e. it forms the trajectory of itself and thus the formation. Leader-follower has the

advantage in that it is easy to understand and the formation is maintained even if

the leader is perturbed by a disturbance. The drawback is if a follower is disturbed

the formation will be lost and there is also a single point of failure, the leader [16].

In the leader-follower formation literature it is generally assumed that the followers’

actuators and sensors have no noise so as to allow the control design to be easier

to understand and to try mainly focus on the stability of the system i.e. formation

errors reaching zero. However, no practical system would obey these assumptions

and therefore state estimators will have to be incorporated into the control design

so as to have a far better state estimate in the presence of a noisy system. This

section will first review the current control schemes used to achieve leader-follower

formations, with ground vehicles, following that how some studies have incorporated

different types of state estimators and sensors for better practical implementations.

2.5.1 Control Schemes

A similar method to the virtual structure consensus approach for leader-follower

is through the use of artificial potentials [27][33]. The idea behind it is the dis-

tance between the robot and the others forms the potential function. The sum of

13

2.5. LEADER-FOLLOWER

all potential functions affecting the individual robot must be driven to a minimum

potential through controlling the robots position to some prescribed inter-spacing

formation. In [27] a Lyapunov function, to prove stability and robustness, as the

sum of the vehicle’s kinetic and artificial potential energy. Study [33] follows a simi-

lar approach except they incorporate obstacles as another potential function for the

leader to adjust the group’s trajectory. The above two artificial potential studies

and most others assume the robots are holonomic and only show results through

simulations. Practical studies generally only use artificial potentials for obstacle

avoidance as obstacles are stationary with no orientation [34].

As mentioned earlier the most common type of land vehicle is the differential drive

vehicle whereby each robot is controlled through a velocity and angular velocity

command. Since each robot’s state is described by its two axes position and orien-

tation the robot is considered non-holonomic, meaning the total controllable degrees

of freedom are less than the total degrees of freedom. The reader is referred to the

System Modelling section in the appendix for an in depth derivation of the system

dynamics before reading on. The system is non-linear in both the control of the

follower robots and the leader-follower relative dynamics, so a non-linear control

law must be designed.

The easiest way to circumvent this non-linearity would be to linearise the system

around a desired operating point [35][36][37]. In [35] they first show how a feed-

forward controller can be designed where, when the reference trajectory is known,

the follower robot will keep to this trajectory. Nonholonomic systems usually have

feedforward control where system inputs are calculated from the known trajectory.

However, the use of the open-loop control only (just feedforward) is practically use-

less because it is not robust to errors in initial system states and other disturbances

during operation. Closed loop is therefore added for practical use. Using feedback

an error kinematic model is designed then a zero error and input operating point is

chosen to linearise the system. Following that normal linear methods are shown to

demonstrate adequate results for following a reference trajectory(leader). In [37], on

which [35] is based, they take it one step further to explicitly show stability through

the use of an indirect Lyapunov function. They show that the system is only locally

stable (due to the linearisation) and it is not asymptotically stable.

The first types of control techniques used to achieve formations with non-holonomic

robots was to linearise the system using the standard input-output state linearisation

14

2.5. LEADER-FOLLOWER

method and then use common linear control tools to achieve the desired characteris-

tics [38][39][40][41]. In [40] they first show a sufficient condition for the observability

of the leader through the use of range/bearing only measurements via an omnidi-

rectional camera. They design a controller through input-output state linearisation

and show how it can be extended to more than one follower however no obstacle

avoidance is incorporated. In [38] they deal with obstacles in quite a clever way,

they treat a detected obstacle, by the leader, as a follower robot and apply the same

type of controller used for the leader-follower formation control to navigate around

the obstacle. However they do not use a decentralised approach as follower robots’

commands are sent via a wireless network and their poses are measured through a

ceiling camera. All studies show how the relative polar coordinates tend to zero as

time elapses but they can never be zero only bounded due to the non-holonomic

nature of the problem [42].

Often the leader’s future trajectory is known with some probability based on the

leader’s past motion i.e. if it has been driving straight for five iterations it will most

likely carry on going straight. This type of future knowledge for the tracking of

this trajectory allows control techniques such as the receding horizon (RH) method

to become very dominant in the literature [34][42][43]. The main drawback of this

method is the high computational requirements but the relatively low complexity

makes this technique very viable for researchers. Methods such as sliding mode

control [44] or neural [45] often do not have as much literature available due to

the high complexity of these methods. Study [34] uses input-output state feedback

linearisation and incorporates standard MPC with this now linear model to achieve

formations. They used an artificial potential function for detected obstacles and

incorporated it into the MPC cost function to derive the final control commands.

They showed their formation maintaining in simulations performed adequately but

the switching of formations was very poor due to the controller not being globally

stable from the linearisation. In study [42] they deal with the very high computa-

tional burden of the RH method by combining it through the error posture with a

very well known stable tracking control method [46]. This combination decreases

the amount of predictive steps in the RH tracking method and thus the overall com-

putation time is decreased. They also develop a waypoint navigation method for

the followers which takes into account their velocity constraints when maintaining

or switching formations.

The most common and least complex to understand approach available in litera-

15

2.5. LEADER-FOLLOWER

ture is deriving a relative error based tracking model and from there determining

control commands which will drive the errors to tend towards zero though the use of

direct Lyapunov theory [47][48][49]. Study [48] first derived the error based model

based on desired relative polar coordinates, then defined control laws based on the

backstepping control approach. For an excellent and well cited study on the back-

stepping control approach the reader is referred to the an older study [50]. Study

[48] then validated these control laws to show stability through the use of a direct

Lyapunov function. Study [47] first constructed a quadratic Lyapunov candidate

function and from there derived conditions, though the use of gains, for what the

input commands should be in order for stability and errors to converge towards zero.

The results showed only the bound of the relative distance error could be decreased

arbitrarily via the tunable gains whereas the rest are ultimately bounded. The tun-

able gains showed how the controller can prioritize the convergence of the relative

polar angle over the relative orientation or vice versa.

2.5.2 State estimation and Sensors

The investigation into sensors which can extract information from the immediate

surroundings of a dynamic object such as a robot has been a topic of research for

many years and an area of extreme interest in the robotics community. There are

many types of sensors used not only in formation control but also for the 3D map-

ping of an environment. The most common ones found in formation control are

ones which can return range/bearing measurements, namely: sonar [51], laser [52],

mono/stereo cameras [53] and more recently RGB-D sensors [54]. Not many for-

mation control studies focus on the sensors needed for implementation but similar

studies into SLAM show the efficacy of the different sensors for robotic navigation.

The common practice in robotics is to use stereo cameras to retrieve range/bearing

measurements of the desired object through the method of stereo triangulation [55].

RGB-D devices such as the Microsoft Kinect which use a similar technique to stereo

triangulation just with infrared have become more popular for indoor navigation.

There are many different ways to identify the leader in an image, the most common

method in formation control studies is to use markers [47][35][38] however, most

robotic navigation studies utilise feature detectors and descriptors [56] to identify

known objects in an image. Any system will need software in order to link and

control all the hardware. Since formation control is still a very actively researched

16

2.6. LITERATURE CONCLUSION

topic computational programs such as Matlab or Octave are used over programming

languages such as C++ or Python due to the support available and the prototyping

speed [57].

Any sensor employed will have noise in its reading and so in any practical sys-

tem a state estimator must be utilised to more accurately determine the present

state from multiple noisy measurements. In 1960,a significantly famous paper was

published by R.E. Kalman [58] described an iterative solution to linear discrete fil-

tering problems, one which was based on the properties of probability theory and

conditional Gaussian variables, known as the Kalman Filter. The method described

in this paper provided a means for estimating a new state estimate which is based

on the priori state as well as a Kalman gain and in making this new state estima-

tion, minimizes the mean of the squared error. The Kalman Filter assumes a linear

model but since most systems are non-linear an adaptation of the original Kalman

filter was developed, the Extended Kalman Filter (EKF). A Kalman Filter litera-

ture survey [59] showed the EKF is by far the most common in formation control

studies as well as in SLAM studies. Another Kalman Filter known as the Unscented

Kalman Filter (UKF) uses the unscented transform to pick a minimal set of sample

points around the mean so that the filter can avoid poor performance when the state

transition and observation models are highly nonlinear. Studies use the UKF when

the robot’s actuators and sensors are not purely Gaussian as the UKF is accurate

up to second order moments in the probability distribution function. There are

other state estimators such as adaptive versions of the different Kalman Filters and

Information Filters [60] but they are far less common in formation control literature.

2.6 Literature Conclusion

Incorporating inter-agent governing architectures in any robotic system allows it

to perform with a greater functionality and intelligence in almost any situation.

The type of formation control architecture to use is however heavily dependent on

the situation it is being applied in. It would be impossible to fully implement the

virtual structure architecture with AUVs due to the extreme inter-communication

bandwidth constraints in underwater navigation however for formation control of

multiple UAVs it would be more applicable. Behavioural based is definitely the

most interesting and promising formation control scheme but the complexity and

unpredictability cause researchers to tend towards easier control schemes such as

17

2.6. LITERATURE CONCLUSION

Virtual Structures or Leader-follower. Virtual Structure is by far the most powerful

formation control technique under the right conditions as it allows the switching of

formations to be a lot more fluid and controlled. Leader-follower is the most versatile

of them all as it is not as complicated to implement and the control laws developed

are easily scalable for more followers up to a point [57]. As mentioned earlier the

majority of the formation control literature mainly focuses on only the theoretical

approach to designing control laws not practical implementations as it is such a

broad and still a very active area of research. As a result subsystems such as state

estimators are not incorporated into the studies’ controller design. After reviewing

the current literature the formation techniques which should be investigated first in

the design aspect of this study is using an error based Lypunov proven controller

with an EKF for state estimation.

18

Chapter 3

System Overview and Design

This chapter first explains the different hardware and software needed to integrate

all the different sensors and actuators. It software side explores the open source

library Robot Operating System (ROS) and how its works in relation to the different

hardware needed. Through understanding the system overview, a mechanical and

software design is presented to illustrate how to utilise the system to achieve the

requirements.

3.1 System Overview

The iRobotCreate was developed from the ever popular iRobot Roomba as a learning

robotic platform for students. What made it popular in the robotics community

was a company known as Willow Garage designed a system known as the Turtlebot

which incorporated the iRobotCreate as the base platform. The hardware used in

this thesis will be similar to the Turtlebot except for the single axis gyro it has

everything the Turtlebot uses and so code for the Turtlebot can be used. The

hardware is as follows:

Mobile Robotic Base:

The iRobotCreate is an affordable mobile robot platform for educators, stu-

dents and developers. The iRobotCreate has over 30 sensors which react to

both internal and external events. It is built for indoor use only. The main

sensors to be utilised on the mobile base are the left and right wheel encoders

for localisation.

19

3.1. SYSTEM OVERVIEW

• iRobotCreate 4400

• 3000 mAh Ni-MH battery pack

• A DB25 connection which can provide unregulated battery power

• 1.2m serial cable with 0.8m USB extender

Microsoft Kinect

The Kinect camera is a low cost RGB-D sensor built specifically for the Xbox

console. It delivers a RGB image and a depth image in parallel video rate.

Since Microsoft has not released any official hardware specifications for the

Kinect the information available has been reversed engineered. The OpenK-

inect community[61] explains the Kinect has one RGB camera and a range

camera based on structured light. According to PrimeSense, the manufac-

turers of the Kinect and other RGB-D devices, the projected IR points are

processed by a PS1080A micro processor to produce a depth image, I refer

the reader to the PrimeSense website. The following Kinect specifications are

from the PrimeSense PS1080A documentation [62] and unofficial sources [63]:

• Colour Camera = 640x480 @30FPS

• Depth(IR) Camera = 320x240 @30FPS

• Depth z resolution(@2m) = 1cm

• Spatial x/y resolution(@2m) = 3mm

• Field of View = 58 ◦H,45 ◦V

• Range = 0.8m - 3.5m

• Motor tilt range = +-27 ◦

• Power Supply = 12V, 2A

• 4m USB and power cable

Authors Laptop G74SX

• i7 @ 2.2Ghz

• weight =4.4 Kg

20

3.2. ROBOT OPERATING SOFTWARE

3.2 Robot Operating Software

This section is aimed at providing the reader with enough background knowledge of

ROS to understand the following Software Design section. ROS provides the means

to communicate with the iRobotCreate and receive data from the Kinect. It is not

only applicable to using just the ”Turtlebot” package but can be used for a range

of other robotic applications. The description from their website best describes its

use and is as follows:

”ROS (Robot Operating System) provides libraries and tools to help software de-

velopers create robot applications. It provides hardware abstraction, device drivers,

libraries, visualizers, message-passing, package management, and more. ROS is li-

censed under an open source, BSD license.”

The latest ROS version at the time of writing(ROS Indigo) and Ubuntu 14 LTS was

used in this thesis. The following ROS description is a summerised version of all

the ROS tutorials needed for this thesis’s application so as to give future students

a head start.

ROS is built up by stacks which in turn are built up by packages. The goal of pack-

ages is to create minimal collections of code for easy reuse where as the stacks allow

users to create and share more complex systems. A stack delivers the functionality

of a system such examples are:

• Turtlebot stack, which provides communication to the iRobotCreate Base

• ros comm stack, which provides internal communication in ROS

• Openni camera stack, which provides communication to the Kinect

The old method of using rosbuild to create user packages has be outdated by the

easier to use catkin package whereby a catkin workspace can be set-up to handle

multiple packages with the same dependencies. A package typically holds the func-

tionality of a more delimited task than a stack and must contain at least one ROS

node. A node typically solves one, or a few, separate tasks such as communicating

between the main computer and the Netbooks on board robots. Nodes are started

21

3.2. ROBOT OPERATING SOFTWARE

up using the rosrun or roslaunch command. The first command starts one single

node whereas the latter can start multiple nodes at the same time using the specified

launch file. The launch file also has the property that values of dynamic parameters

may be supplied to the nodes. This results in an accessible way of troubleshooting

and trimming without re-compiling the code. ROS scripts which allow the user to

create their own packages/stacks can be coded in either C++ or python.

A ROS message is a data structure that can be sent between nodes. Messages

can hold any information and ROS comes with useful predefined messages. The two

types of messages needed are the Sensor msgs and Geometry msgs for the Kinect

and iRobotBase respectively. Users can define their own message type such as the

result of a calculation.

ROS topics are often referred to as buses over which nodes exchange ROS mes-

sages. A topic implements an asynchronous communication pattern as a message

is posted from one node to the topic and any nodes which listen to that particu-

lar topic will get a callback whereby the received message from the topic can be

processed. Nodes in this fashion are referred to as publishers and subscribers to

a certain topic. The ROS topic model is a very flexible communication paradigm,

but its asynchronicity is not appropriate for request / reply interactions, which are

often required in a distributed system. Request / reply is done via a Service, which

is defined by a pair of messages: one for the request and one for the reply much the

same as a new ROS message type. So how does this network of topics and services

be controlled while that is through the master. The master is the computer which

runs the roscore command. This command starts the ROS network and enables the

master to access all topics etc plus monitor all traffic within the system.

In any robotic system is very useful to be able to record data received from sensors to

be processed later or analysed with different software. The ROS framework provides

just this tool and it is known as a rosbag. A bag file can record all messages received

from any number of topics specified when calling the rosbag record command. The

bag file can therefore be used to reply a whole sequence of events such as RGB data

from the Kinect to assess different image identification algorithms without needing

the Kinect.

22

3.3. SYSTEM DESIGN

3.3 System Design

A design can be systematically produced through understanding how the hardware

and software constraints will affect the algorithms needed for leader-follower forma-

tion control. The physical set-up of the leader and follower iRobotCreate platforms

are explained in Hardware/Mechanical Design. The following section, Software De-

sign, gives an in depth investigation into how ROS must be utilised to integrate all

parts of the system.

3.3.1 Hardware/Mechanical

iRobotCreate Leader

The first order of business is to design a way to for the follower to identify the

leader. Not only that but the follower must be able to measure the leader’s relative

pose through this identification. The most obvious and intuitive way would be to

have some very unique markers on the leader which will make it stand out from

the background. The following two designs show the progression to the final leader

identification design.

Design One:

The most simple method to identify a marker would be through its colour

and shape. Since a pure primary colour within a concentric circle would be

extremely uncommon in the robots’ background, it was chosen to be used as

the marker. However this design must also be able to read the leader’s relative

pose and so through understanding the law of cosines one knows the angles of

any triangle can be calculated if all sides are known, Appendix A. Armed with

this knowledge using two red circles to both identify the leader and measure

the relative pose are proposed. The circles are set 0.25m apart and are parallel

with the horizon. This set-up is best shown below in figure 3.1:

There are a number of issues with the above designed set-up, namely:

• See figure 3.2. When the leader is rotates the 2D circles will not appear

to be perfectly round but rather ellipses which would alter measurements.

• See figure 3.3. There will be bends in the paper, since it is paper after

all, and so the printed circles will not be appear to be perfectly round

which would also alter measurements

23

3.3. SYSTEM DESIGN

Figure 3.1: Design One Setup

Figure 3.2: Issue One Figure 3.3: Issue Two

24

3.3. SYSTEM DESIGN

Final Design:

In order to deal with the distortions associated with the 2D circles on a piece

of paper the following adjustment is proposed. The solution is obvious after

the above design, rather use a 3D shape as after all the robots will be navi-

gating a 3D world. The colour will remain the same as this was not the issue

but the shape will be chosen to be a sphere. This improvement allows the

measurements of the leader to not be distorted by its relative rotation to the

follower. The validation is shown in figure 3.4.

Figure 3.4: Improved and Final Design

Landmarks

As will be seen in the Control Design section it is necessary for the robot to localise

itself with its environment. In order to simplify the problem known landmarks

will be used to achieve that. These known landmarks must be easily identified to

acquire their relative range and bearing measurement to the follower robot. The

leader identification design steps illuminate a way to achieve this. Each landmark

will have a different colour to easily identify it and will be a sphere so the follower

robot can acquire measurements regardless of its relative position to the landmark.

The landmarks are shown in figure 3.5.

iRobotCreate Follower

This section outlines the steps take for the set-up up of the iRobotCreate base and

the Kinect. Since no Netbook could be provided for the follower robot the author’s

25

3.3. SYSTEM DESIGN

Figure 3.5: Landmark Design

laptop was used instead. The Kinect was not allowed to be dismantled so as to

retrofit it to iRobotCreate base as it was borrowed from a source outside the univer-

sity. The borrowed Kinect’s power and USB cable were over 4m long so the Kinect

did not have to be powered off the iRobotCreate’s battery. It was deemed reason-

able to not keep the laptop on top of the base but rather use a 2m long serial to usb

cable so as not to interfere with robot’s dynamics. The robot’s dynamics would be

effected due to the weight of the author’s laptop, Asus G74SX, which mentioned in

the System Overview weighs 4.4 kg.

Even though it was deemed acceptable to not have the laptop on board with the

Kinect powered from the base due to the unavailability of the Netbooks, I will still

explain how to set-up up a power supply for the Kinect for future research. The

Kinect fuses the USB and the power source cable into one PoweredUSB cable at

the splitter, see figure 3.6. So in order to provide power not from the wall outlet

this splitter will have to be permanently damaged hence the reason for using a long

cable instead. As mentioned earlier the iRobotCreate base can only output an un-

regulated supply from the battery which could potentially damage the Kinect. So

instead of installing a separate regulated battery on the base a voltage regulator

should be employed. The Kinect states it needs 2A of current to operate but this

26

3.3. SYSTEM DESIGN

is actually only if the tilt motor is needed, the cameras work fine with just 1A [61].

Any standard 12V regulator can be used such as common texas instraments LM

series[64] but the Kinect is very sensitive to current fluctuations so the coupling ca-

pacitors etc. must be set-up properly. The voltage regulators Vin and GND should

be connected to pin 10 and 14 on the DB25 socket respectively.

Figure 3.6: Kinect Splitter

As will be seen in the following section on the software design the center of the RGB

camera must be aligned with the center of the iRobotCreate base. With this the

final follower mechanical set-up is shown below in figure 3.7

3.3.2 Software

This section will outline the specific issues experienced during the coding of the

Image Processing design and Control design algorithms in the following sections. It

will not only show how these issues were dealt with but provide the reader with a

better understanding of the different ROS packages used rather than trying to figure

them out from just the source code.

As mentioned earlier since no official Kinect SDK has been released for linux a

community known as the OpenNI project has developed a ROS stack to interface

with the Kinect and other PrimeSense devices. The stack contains two Kinect pack-

27

3.3. SYSTEM DESIGN

Figure 3.7: Final follower setup

ages one for just the camera and the other for skeleton tracking. The former is the

one used for any application without the need to track human movement. The pack-

age is launched in ROS with the command roslaunch openni camera openni.launch.

As I mentioned earlier the launch command can run several packages each with dif-

ferent nodes as opposed to just the rosrun command which can only start one node.

The nodes from the openni packages publish all topics to do with the Kinect, the

ones of interest to us are the following:

• /camera/depth/image raw

• /camera/rgb/image color

However the reader will notice if the rostopic list command is run there are several

topics which have registered before their name. This is in relation to the fact that

all cameras even the Kinect need to be intrinsically and extrinsically calibrated as

each device is generally different to the factory calibration settings.

Calibration

Intrinsic refers to the the camera’s internal properties such as focal length, principal

point etc where as extrinsic denotes the transformation from the 3D world to the

3D camera coordinates. The calibration process is often a long procedure so luckily

28

3.3. SYSTEM DESIGN

ROS has a packages to fully calibrate the Kinect. The camera calibration package

provides a text file containing the camera’s intrinsic calibration values. It works by

mapping a chequerboard with known dimensions and sizes though space in front of

the camera, it can be used for both the RGB and IR camera, see figure 3.8 and 3.9.

Figure 3.8: RGB calibration Figure 3.9: IR depth calibration

The ROS camera pose calibration package can extrinsically calibrate the Kinect’s

IR camera to an external RGB camera or the built in one. It is a little bit more

tricky to use than the intrinsic camera calibration package. It basically works by

recording the RGB data in a rosbag and then by comparing the replayed rosbag to

the live depth data topic stream it produces a ROS tf transform relating the che-

querboard in both data streams. In short a tf transform is how ROS transforms a

frame to another so for example how it updates the iRobotCreate’s odometry data

with the wheel encoder measurements. The tf transform is saved to disk and by

enabling depth registration in the openni rqt reconfigure package the openni topics

will use the extrinsic tf transform and publish registered topics as well. As a side

note for both calibration packages the IR camera’s emitter must be covered so as to

produce a clean(unspeckled) IR image.

Image handling

In order to manipulate and analyse the Kinect’s RGB and depth images a computer

vision package will be needed. OpenCV V3.0 is chosen as it is released under a BSD

license and hence it’s free for academic use. OpenCV has both C++ and python

interfaces but since the computer vision scope of this project is minimal and the

python API is far easier to use, python was chosen as the programming language for

all ROS scripts generated. As mentioned earlier openni publishes the Kinect’s RGB

and depth data in the ROS Sensors msgs Image format which OpenCV does not

29

3.3. SYSTEM DESIGN

support. The topic’s data must be converted into a numpy type array so OpenCV

can handle it. The ROS community has distributed a package for just the purpose,

known as cv bridge. In order to use both OpenCV and cv bridge the package’s

dependencies must be changed in the CMakeLists file, this basically just tells ROS

where to find each package.

Interfacing with the iRobotCreate

The Turtlebot package is used to send control commands to the iRobotCreate base

but the package’s launch variables needed to be slightly modifed so that it realises it

is just an iRobotCreate not a Turtlebot. This is achieved through setting the envi-

ronmental variables the package uses to set what type of Turtlebot it is, as there are

two mobile base options (the iRobotCreate or the default Kobuki). The following

must be incorporated into the setup.bash file in the required package:

• export TURTLEBOT BASE=create

• export TURTLEBOT STACKS=circles

• export TURTLEBOT SERIAL PORT=/dev/ttyUSB0 (may appear under an-

other ttyUSBn)

The command roslaunch turtlebot bringup minimal.launch starts the nodes respon-

sible for communications with the above defined environmental variables. The

/odom topic publishes the iRobotCreate’s pose based on the wheel encoders’ mea-

surements at around 30 Hz and is the nav msgs/Odometry format. The Odome-

try format is just the pose and velocities of the robot at the time of publishing.

The topic which is responsible for actuating the velocity commands is called the

/cmd vel mux/input/navi and uses the ROS Geometry msgs Twist message for-

mat. The Twist variable takes in all linear and angular velocities for all axes but

the iRobotCreate only uses the heading direction linear velocity and z direction

angular velocty parts, as it is a ground vehicle. The latching time of the velocity

commands are 0.1 seconds so in order to keep the robot moving we would have to

publish at 10Hz. Since the main script will be running at roughly 30Hz (Kinect’s

publishing and odometry topic publishing frequency) this is not an issue.

ROS Network Timing

Not many people realise that the RGB and depth data from the PS1080A micro-

processor is sent at different rates with different variances, seen in figure ??. As

30

3.3. SYSTEM DESIGN

mentioned earlier ROS works with callback functions which occur, like an inter-

rupts, when data is published to a particular topic the subscriber is listening to.

Since the RGB image is used to identify the leader/landmarks and the depth image

is used to provide relative measurements, the issue that arises is how to trigger a

callback function for two topics which publish at different rates. There is not much

information available in the ROS documentation except for a couple of misleading

forum posts which deal with this issue. After searching through the latest ROS

indigo API a package, named message filters, was seen to be able to cope with this

issue. It was originally created to deal with topics which have the same timestamps

(publishing rates) but has been recently extended to deal with approximate times-

tamps. It has the same set-up and parameters as the original TimeSynchronizer

except for an extra slop parameter in the constructor that defines the delay (in sec-

onds) with which messages can be synchronised. This allows the program to enter

a callback function which performs the image processing and thus applies control

commands when the RGB, depth and odometry data is available. Figures 3.10 and

3.11 show the publishing rates of the RGB and depth data respectively. As can be

seen the difference in publishing times is similar to the odometry topic and is in the

micro second range which for this project’s purpose is adequate.

Figure 3.10: RGB publishing rate

Figure 3.11: Depth publishing rate

31

Chapter 4

Image Processing Algorithm

Design

One of the major challenges in computer vision is determining the shape, location,

or quantity of instances of a particular object in an image. A solution to this prob-

lem is to provide an algorithm that can be used to find any shape within an image

according to parameters needed to describe the shapes. A technique used to achieve

this is the Hough Transform (HT) invented by Richard Duda and Peter Hard in

1992. The HT was originally meant to detect arbitrary shapes but was later ex-

tended to the more common Circular Hough Transform (CHT). Since all markers

in the Mechanical Design section are ensured to appear circular in the RGB image

this method is ideal thus it is chosen. The method highly depends on converting

gray-scale images to binary images through edge detection techniques such as Canny

or colour thresholding with morphological operations techniques. I refer the reader

to a very good explanation of how the HT/CHT and the edge detection algorithms

used in this section work [65].

This section first starts out by evaluating the different preprocessing algorithms

used with the CHT. A final preprocessing algorithm will be chosen based on execu-

tion time and number of mismatches in identifying the marker with the CHT. Since

all the markers are different coloured spheres only a single sphere of the leader’s

will be chosen as the marker for the comparison. Following the preprocessing in-

vestigation the methods used to identify and measure the leader and landmarks are

outlined. Finally improvements on the methods are outlined and explained.

32

4.1. PREPROCESSING INVESTIGATION

4.1 Preprocessing Investigation

A rosbag will be used to store the red sphere moving around in 3D space in front

of the Kinect. This stored data will form the basis to judge the number of circle

identification mismatches. Two techniques will be investigated namely, the Canny

Edge Detection Algorithm and HSV Thresholding with Morphological Operations.

When the rosbag file is played back the ROS script Node called PreprocessingEval

will output to a csv file if a circle is detected in the frame for each method. The

amount of times a detected circle will be counted using excel. All imaging functions

used are available in OpenCV.

Canny Edge Dectection Algorithm

The Canny Edge Detection is by far the most popular edge detection algorithm

hence it being chosen, it was first developed by John F. Canny in 1986. The algo-

rithm first applies a Sobel filter in the horizontal and vertical direction, from that

it can find the gradient magnitude and direction for each pixel. It then follows to

suppress edges which are not the local maximum in its neighbourhood in the direc-

tion of the gradient, basically produces thin lines showing the edges. A hysteresis

thresholding is applied with a pre-set minimum and maximum value, this decides

which edges to keep in the binary image.

Figure 4.1: Canny Edge Detection Figure 4.2: Movement of sphere

HSV Thresholding with Morphological Operations

Firstly the RGB image is converted to the HSV space whereby colour identification

is made easier. Since the sphere is red it will be between a definitive HSV value

space, this thresholding produces a binary image of where the colour red is found.

There are two morphological transformations namely, erosion and dilation. The

33

4.1. PREPROCESSING INVESTIGATION

Table 4.1: Canny Edge Detection Circle Detection

Trial Number Circle Detection Percentage
1 92.7
2 89.4

type of kernel used will produce either one of the transformations and must only be

performed on binary images. Erosion erodes away the boundaries of the foreground

object by applying the kernel to each pixel in the image, if all the pixels in the kernel

equal 1 (white) then that particular pixel will be considered 1 else it will be eroded

i.e made 0. Dilation is the opposite to erosion, it increases the size of the foreground

object. The combination of these two morphological transformations will remove

noise and fill the inner foreground object’s white space, they are known as opening

and closing respectively.

Figure 4.3: HSV Thresholding with Mor-
phological Operations

Figure 4.4: Movement of sphere

Table 4.2: HSV Thresholding with Morphological Operations Circle Detection

Trial Number Circle Detection Percentage
1 97.2
2 93.9

Investigation Conclusion

Each trial was performed with 200 image frames with a different rosbag file, trial

one was performed at 1m away where trial 2 was at 2m. Table 4.2 shows the detec-

34

4.2. LEADER MEASUREMENT

tion percentage of HSV Thresholdng is about 5 percent higher on average compared

to the Canny Edge Detection, table 4.1. The Canny Edge Detection performed

adequately but the robustness the HSV Thresholding allows it to out perform the

Canny Edge Detection. The downfall is due to the Canny Edge Detection sometimes

picking up circles in the background which are between the set radius interval in

the CHT function. For these reasons the Thresholding method was chosen to be the

identification algorithm for both the leader and landmarks.

4.2 Leader Measurement

Since the center location of the two leader’s spheres are known through the identi-

fication algorithm, the z value from the follower to both these spheres can be found

from the calibrated Kinect’s depth image. From the System Modelling section there

are three measurements needed to describe the relative pose of the leader from the

follower namely, the two polar coordinates and the difference in heading. These val-

ues can be calculated from understanding the cosine law and some clever geometry

manipulation, the steps are outlined below:

The polar coordinates value row:

By taking advantage of the known distance between the two spheres on the

leader plus with the measured depths to either one. The cosine rule is used to

find the angle alpha and beta, see Appendix A. Through knowing these angles

and the magnitude of the sides the relative coordinates can be calculated as

follows:

ρ =
√
zright2 + robotlength2 − zright ∗ robotlength ∗ cos (alpha) (4.1)

The bearing angle phi:

The middle pixel coordinate of the two spheres is found. The CHT provides

both the circle pixel coordinate and radius, so by knowing the actual size of

the sphere a pixel to real distance ratio is formed. This ratio is then used

to convert how far of the middle of the spheres are to the follower’s heading

direction (i.e. how far off the x=320 axis), see figure 4.5. There are two cases

in this scenario, leader to either to the right 4.2 or left B.3 of the follower’s

35

4.2. LEADER MEASUREMENT

heading axis.

φ = arccos (
|xmid ∗ ratio|

ρ
) (4.2)

φ = arcsin (
|xmid ∗ ratio|

ρ
) +

π

2
(4.3)

The difference in heading angle gamma: We can tell the direction of the leader’s

relative heading by whether alpha or beta are greater, see figure 4.5. The an-

gle the zright line and the horizontal axis make form the starting point for

the calculations, named φr. It is very much like calculating φ with xmid but

for the right sphere using xright. Using the same two cases above (right or

left of the center x axis) for whether alpha or beta are greater , the following

equations calculate gamma:

• alpha>beta:

(rightside)

γ = −(α− arcsin (
|xright ∗ ratio|

zright
)) (4.4)

(leftside)

γ = −(α− arccos (
|xright ∗ ratio|

zright
)) (4.5)

• alpha<beta:

(rightside)

γ = α− arcsin (
|xright ∗ ratio|

zright
) (4.6)

(leftside)

γ = α− arccos (
|xright ∗ ratio|

zright
) (4.7)

4.2.1 Landmark Measurement

The identification algorithm returns all the detected circles’ center coordinates and

radius of every landmark found in the image. As will be outlined in the Localisation

section only one landmark measurement is used to update the follower’s pose. The

method to choose which landmark to measure in the image will be based on the

largest returned radius from the CHT, this will cause the depth measurement to

be the most accurate, see figure 4.6. Since the landmark measurements only re-

quire a relative range and bearing measurement the first two steps outlined in the

above Leader Measurement section can be slightly modified. The circle coordinates

36

4.2. LEADER MEASUREMENT

Figure 4.5: Analytical explanation of xmid and xright to calculate phi and gamma

corresponding to the largest radius will be used to find the depth to that sphere

through the Kinect’s depth map. A landmark assignment algorithm will iterate

through each colour of all the landmarks and match the found landmark with the

corresponding index. It achieves this by thresholding a small area around the cicles’s

center coordinates to work out the index.

Figure 4.6: Landmark Measurement

37

4.3. FINAL ALGORITHM

4.3 Final Algorithm

The complete image processing algorithm takes in the RGB and depth images from

the Kinect and returns the relative measurements from the follower to the leader

and landmarks. The functions used in the algorithm are in the Measure python

module (See CD) and are defined as follows:

getLeaderCenterPoints(RGB image): Takes in an OpenCV format image and

performs the identification algorithm and returns the two center points and

radii of the leader’s red spheres.

getLandMarkPoints(RGB image): Takes in an OpenCV format image and per-

forms the identification algorithm and returns the center points and radii of

all the landmarks.

getLeaderMeasurements(leader center points,depth image) : Takes in the

leader’s center points and returns the relative coordinates namely, [ρ, φ, γ].

getLandMarkMeasurements(leader center points,depth image) : Takes in

the landmark’s center point and returns the relative coordinates namely, [ρ, φ].

4.4 Optimisation

The above outlined algorithms are very simple so they are robust but there are a

couple of methods to improve their runtime.

• Crop Image

The depth image map is only accurate in a 320x240 resolution which is far less

than the RGB 640x320. If the depth map is indexed outside of its resolution

it will either return a very large value or zero. It therefore makes sense to

crop the RGB image down to 320x240 before the identification algorithm is

run as the program would not be able to find any measurements outside of

this resolution. This cropping of the resolution will allow the identification

algorithm to run faster as less pixels need to be iterated through.

38

4.4. OPTIMISATION

Figure 4.7: Improved Design

• CHT radius interval parameter

The OpenCV CHT function parses two parameters namely, min radius and

max radius. These parameters govern what circles the CHT will consider in the

hough space based on the set pixel radius interval passed into the function. If

no future knowledge is available to give an indication of the radius interval the

function takes considerably longer to find the circles as it has to iterate through

the hough space. This computation time can be decreased by storing the last

known radius of both the leader’s spheres and the last measured landmark

then defining a +−10 interval based on those stored radii.

39

Chapter 5

Control Design

In any control set-up there are certain steps that must be followed to ensure the

design produces adequate results. The system to be controlled’s dynamics must

first be modelled through analysing the set-up. Once sets of equations defining

the system have be defined, the sensors’ and actuators’ physical limitations must

be determined through ”step test” data so as to design around these constraints.

These steps are encompassed in the System Modelling section. A controller must

be designed/selected and shown to mathematically cause the system to achieve the

desired results, Controller Selection. The rest of this chapter outlines the other

control design steps needed for the controller to achieve formation control.

5.1 System Modelling

5.1.1 iRobotCreate’s Dynamics

In general the configuration of a robot can be described by six parameters. Three-

dimensional Cartesian coordinates plus three Euler angles pitch,roll and yaw. Since

the iRobotCreate is a ground robot its pose is described with a two-dimensional

Cartesian coordinate (x,y) and a single Euler angle yaw (heading). In practice

you find two types of motion models namely, Odometry based and Velocity-based

(dead reckoning). Dead reckoning is a mathematical procedure for determining the

present location of a vehicle without sensor feedback information about what actu-

ally happened in the real world. It is achieved using the previous pose and command

velocities to produce the current pose hence the velocity-based motion model is dead

40

5.2. CONTROLLER SELECTION

reckoning. I refer the reader to Appendix B.1, it explains how the two different mo-

tion models work and why it is necessary to understand both.

The two types of motion models presented in Appendix B.1 are very much related

to do with the same type motion. In essence the velocity-based model is centered

around the differential drive kinematics (DDK) of the robot to show ideally how

the robot will move through its environment where as the odometry-based model

shows what actually happened using the same DDK of the robot. So the velocity-

based model is used to predict where the robot will go and the odometry is used to

compare what actually happened after the velocity commands have been applied.

The relevance of being able to predict the motion and then compare it to a noisy

measurement of what actually happened will become apparent in the Localisation

section.

5.1.2 Leader-follower Formation Dynamics

This short section outlines the relative coordinate model between the leader and

follower robot, it is best analytically understood, see figure 5.1.q1q2
q3

 =


√

(xL − xF)2 + (yL − yF)2

arctan (yL−yF
xL−xF

)

θL − θF

 (5.1)

Using the decribed motion model above and differentiating gives:∆q1

∆q2

∆q3

 =

−c2 0
s2
q1
−1

0 −1

[
vF

ωF

]
+

c32 0
s32
q1

0

0 −1

[
vL

ωL

]
(5.2)

where ci = cos qi, ci = sin qi and cij = cos (qi − qj), cij = sin (qi − qj).

5.2 Controller Selection

The literature review outlines the different types of controllers used to achieve the

leader-follower formation control. Complex controllers such as neural/sliding mode

were out of the author’s undergraduate control understanding and so were not con-

sidered. Linearising controllers about an operating point[35] and state feedback lin-

41

5.2. CONTROLLER SELECTION

Figure 5.1: Relative Coordinates

earising controllers [40] had already been experienced during undergraduate studies,

so relatively nothing new would be understood by exploring them further. Receding

Horizon (RH) controllers [34] appeared to be the most common type in formation

control because if some future knowledge is known, which it generally is, then an

optimised trajectory can be planned out where the magnitude in error and control

action is taken into account. However RH studies often include far more design

issues, such as actuator velocity constraints [42], into the formation controller which

considerably complicates the understanding of how the controller works. Intuitively

error based tracking controllers [48] are the easiest to understand and since the sug-

gested paper by the author’s supervisor is an error base tracking control design, this

type of controller was chosen for this study. Following the System Modelling section

the selected controller [47] is mathematically shown and then simulated, in Matlab,

for further validation. The controller assumes there is no sensor or actuator noise,

true pose values are always known and the system is continuous. The following

constants, control laws and conditions are derived and proven in Appendix A.4

Due to the non-holonomic nature the controller can only control a combination

of all three states. The controller can prioritises the control of q2 over q3 or vice

versa. The error between the desired and actual relative formation coordinates is:ε1ε2
ε3

 =

q1 − q1dq2 − q2d
q3 − q3d

 (5.3)

42

5.3. LOCALISATION

It assumes |qi|〈 π2 for i = 1, 2 , |q1|〉 0 and the desired |q2d1|〈 π2 . The desired value of

q3 is assumed to be zero.

v = −k1(Λ1ε1 + Λ2ε2ε3) (5.4)

ω = k2(p22
t2
q2
ε1 + p22ε2 + p33ε3 +

p22
q1c22

ε1ε2) (5.5)

where k1 and k2 are the postive gains. The following conditions must be satisfied:

p11 > p22(
t2
q1

)2 +
p22
q21

(|s2
c32

+
s2
c2
|)|ε2| (5.6)

and either 5.7 or 5.8 must be satisfied:

p22 < p33 (5.7)

p22 > p33 and
|ωL|
vL

<
1

q1
(5.8)

Final Controller Remarks

Although through the manipulation of the gains k1 and k2 it can be shown that the

error states will become uniformly bounded, there is no way to mathematically show

what the gains should be in order for certain bounds to be achieved and at what

rate they will converge. This means that the gains must be experimentally changed

for different types of formation trajectories in order to realise what combination of

gains will result in what error bounds and what convergence rates. It should first

be determined through simulations and then finally on the actually physical system,

as the robot’s velocity constraints might prevent certain gains from performing as

in the simulations.

5.3 Localisation

The selected controller assumes the true pose value for each robot is known in or-

der to output the required velocity commands to keep the formation. However, as

seen in the System Modelling section the iRobotCreate like any robotic platform

has noise in both its odometry and sensors. So when the controller sends out the

required velocity commands the robot’s actuators do not perform ideally due to

many different types of errors. The feedback provided through the odometry data

and visual both provide noisy measurements of what really happened in the robot’s

environment.

43

5.3. LOCALISATION

So to acquire a more accurate pose estimation the two feedback sensors’ measure-

ments are fused through an algorithm rather than just using the odometry data

where errors will accumulate over time. These algorithms take a probabilistic ap-

proach through modelling the system as Bayesian network and then take advantage

of knowing the sensors’ probabilty distributions to produce a far more accurate pos-

terior pose estimation.

The most common type of recursive estimation for a non-linear system is the Ex-

tended Kalman Filter (EKF). The Kalman Filter proposed was by R.E. Kalman in

1960 but it could only handle linear systems and so it was later extended to handle

non-linear systems hence EKF. Another filter known as the Unscented Kalman Filter

(UKF) can also handle non-linear systems but it takes advantage of the unscented

transform rather than through the use of jacobians. An in-depth explanation and

derivation of the EKF and UKF is in Appendix A.5. Even though both an EKF and

UKF are designed and simulated in the Simulation section, only the EKF will be

implemented on the physical set-up. The noise covariance matrices Rt and Qt used

in the state estimators below are derived in Appendix A.3. The following sections

derive the state transition and state measurement functions for the state estimators.

5.3.1 Follower pose state

The motion noise modelRt for the position reading error is larger than what it should

be as it does not take into account how the heading direction of the robot changes

the error in reading the x and y states. So it is the supremum of the largest error for

both, meaning the odometry reading is actually slightly more accurate than what the

EKF and UKF will think due to Rt. However due to the relatively low measurement

error from the Kinect the state estimators will most likely regard the measurement

as more true. For the EKF in simulations, the prediction of the state uses the motion

model with some additive noise to simulate the odometry noisy measurement but

in practice the predicted state will be the current change in odometry reading.

The following are the non-linear state transition g and measurement model h for

estimating the follower’s pose:

44

5.3. LOCALISATION

Function g xtyt
θt

 =

xt−1yt−1

θt−1

 +

−
v
ω

sin θ + v
ω

sin (θ + ω∆T)
v
ω

cos θ − v
ω

cos (θ + ω∆T)

ω∆T

 (5.9)

Jacobian of g

G =

1 0 − v
ω

cos θ + v
ω

cos (θ + ω∆T)

0 1 − v
ω

sin θ + v
ω

sin (θ + ω∆T)

0 0 1

 (5.10)

Function h

δ =

[
δx

δy

]
=

[
xlandmark − xfollower
ylandmark − yfollower

]
q = δT δ

zt =

[√
q

arctan δy
δx
− θfollower

]
(5.11)

Jacobian of h

H =
1

q

[
−√qδx −

√
qδy 0

δy −δx −q

]
(5.12)

5.3.2 Leader-follower relative state

The state of the follower is not the only state that needs to be estimated but the

leader-follower relative state vector must also be estimated so the controller can gen-

erate commands to accurately keep the formation. The function g and the necessary

constants are set out in the Leader-follower Formation Dynamics section where the

differential is just added to the current vector. The jacabian is as follows:

Jacobian of g

G =

 1 vfs2 + vls32 −vls32
−vf s2

q[0]2
− vl s32q[0]2

1 + vf
c2
q[0]
− vl c32q[0]

vl
c32
q[0]

0 0 1

 (5.13)

The sensor model h is assumed to measure the leader’s relative coordinates directly

since it does not have to transform the measurements to be compared to values in

the global frame like the landmarks, hence relative. So the sensor model h is just

a 3x3 identity matrix. As a side note there are two ways to achieve estimating

the leader, one through estimating the relative coordinates and then using them to

45

5.3. LOCALISATION

update the leader’s pose or the other to first use the measured relative coordinates

to determine the measured leader’s pose and then to use a motion model, like the

follower pose EKF, to gain a better estimate of the leader. The former was chosen

as the function g had already been determined and was more intuitive.

46

Chapter 6

Final Design Overview and

Experimental Methodology

6.1 Final Design Overview

The final designed algorithm can be shown in a ROS type node structured flow

diagram, see figure 6.1.

6.2 Experimental Methodology

The final design flow diagram illustrates the many different aspects that need to

be combined in order for the entire system to operate properly. To insure the final

design works as planned a bottom up approach for testing each different subsystem

will be used. The main essential systems such as the controller and state estima-

tors will be simulated to validate their design so as to allow easier debugging of

the implemented system as problems should not be associated with the design but

rather the hardware etc. The final implemented system will be rigorously tested

to ascertain whether the system performs as specified by the scope of this project.

The steps for collecting the experimental data in the Simulation Results section and

Implementation Results section are described below:

47

6.2. EXPERIMENTAL METHODOLOGY

Figure 6.1: Final Design Algorithm

48

6.2. EXPERIMENTAL METHODOLOGY

6.2.1 Simulations

The selected controller was mathematically proven, in Appendix A.3, to drive the

errors in the leader-follower formation set-up towards a bounded region in the state

space through the manipulation of the controller’s gains. For further validation just

the controller will be simulated in Matlab’s Simulink environment to show how the

relative coordinate errors tend towards zero. The controller and the two different

state estimators, EKF and UKF, will be incorporated in a Matlab script and the

combined systems will be shown to still maintain the formation in the presence of

simulated environmental noise. Since the time between iterations does not matter in

simulations, as all the systems are digital, so convergence speed etc. can be though

of in number of iterations but for simplicity the time difference will be one second.

Three simulations will be performed on each state estimator where by the noise

transition and measurement matrix will be varied. The following three noise ma-

trices are used to test both the follower’s pose state estimator and the relative

coordinate state estimator. Where the measurement covariance matrix Qt shown

below, becomes a 3x3 matrix for the relative coordinate state estimator where the

third diagonal entry is just the same as the second. The noise matrices Rt and Qt

do not correspond to the modelled matrices for the iRobot and Kinect as these were

too low noise to test the state estimators and so values were chosen to show off the

two state estimators’ efficacy in simulations.

High Noise

Rt =

0.92 0 0

0 0.92 0

0 0 0.082


Qt =

[
0.12 0

0 0.082

]

Medium Noise

Rt =

0.092 0 0

0 0.092 0

0 0 0.042


Qt =

[
0.082 0

0 0.042

]

49

6.2. EXPERIMENTAL METHODOLOGY

Low Noise

Rt =

0.0092 0 0

0 0.0092 0

0 0 0.012


Qt =

[
0.042 0

0 0.012

]

6.2.2 Implementation

The final designed ROS script will be edited so that all internal data in the script

will be written to multiple .CSV text files every iteration of the main loop so that

the results can be presented in a readable format. The data to be stored for the

evaluation of the implementation is as follows:

Leader and Landmark identification misses

The type of dataset used to evaluate the identification algorithm is the same as

in the Image Processing but the data from the implemented system involves the

iRobotCreate moving and so this motion might cause different results which

must be investigated. The ability of the leader and landmark state measure-

ment algorithm will not be tested as the equations derived are adequate to

show if depth data is available and identification algorithms have produced

matches the required measured states are produced with accuracy determined

only by the noise of the sensors.

As stated in the scope of the project since there is no aerial webcam available to

track the positions of the iRobots in real time so as to validate the experimental

results. So instead the final poses of the iRobots will be measured and compared to

the estimated states by the system, this constraint is deemed satisfactory as it still

validates the state estimators’ ability.

Estimated Leader/Follower pose states and Relative coordinate state

Multiple starting scenarios for when the leader is stationary or moving will be

investigated with different gain sets for the controller. The final states of each

data set will be compared to the true state value for the data set from measur-

ing using the tiled grid and tape measures/protractors. The resulting mean

and standard deviation of the error for all the data sets from each particular

50

6.2. EXPERIMENTAL METHODOLOGY

scenario will be stated in the Implementation Results section. The raw data

for each data set is in the CD and the all the plots for one of each scenario

data set will be shown in Appendix D to provide a better insight into what

happened during the scenario. As stated in the scope of this project since

no Netbooks for the iRobotCreates were available the leader will be either

stationary or pulled along by hand at a relatively constant velocity.

51

Chapter 7

Simulation Experiments

7.1 Controller

The study [47] simulates their proposed controller with a circular and straight line

leader trajectories with different desired relative coordinates. The simulink model

of the controller is shown in C.1, the simulation steps will be similar to what was

done in the study so as to confirm the study’s results. Only the plot of the robots’

positions will be shown in this section, figures 7.1 and 7.2, refer to Appendix C for

the error and velocity plots for each leader trajectory.

Figure 7.1: Linear leader velocity Figure 7.2: Circular leader trajectory

52

7.2. STATE ESTIMATORS

7.2 State Estimators

7.2.1 Follower Pose Estimators

Figures C.6 to C.11 show the results of the EKF and UKF for just estimating the

follower’s pose with the surrounding landmarks.

7.2.2 Leader Pose Estimator

Figures C.12 to C.14 show the results of the EKF estimating both follower’s pose

using surrounding landmarks and the leader’s pose through estimating the relative

coordinates.

7.3 Final Control System

Figures 7.3 and 7.4 show the final simulated system where the EKF is estimating the

follower’s pose and the relative coordinate state with low and high noise respectively.

Since the controller only simulations showed the ability of the controller to follow

a straight line and circular leader trajectory, the final simulated design shows a

much more complex motion. As can be seen in the figures 7.3 and 7.4 the leader’s

trajectory changes at around x = 20 and y = 35 step mark to a circular arc.

Figure 7.3: Both state estimators for
leader follower control(low noise)

Figure 7.4: Both state estimators for
leader follower control(high noise)

53

Chapter 8

Implementation Results

Note: All position values and angular values in the following tables are absoluted

and in [×10−3m] and [×10−3rad] respectively. The gain sets are laid out in D.1.

8.1 Zero desired polar angle with stationary leader

8.1.1 In line start

Five data sets with gain set 1 were used the average is shown in table 8.1. The xy

positions of the robot during one of the data sets is shown in D.1.

Table 8.1: In line start results

Missdetection mean std dev

Leader[%] 93.2 2
Landmark[%] 89.4 2.4

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 8.2 0.2 1.3 0.02 1.8 0.01
Follower Estimate Pose 3.9 0.1 0.12 0.006 0.22 0.01
Leader Estimate Pose 28.1 2 18 1.2 61.2 0.9

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 56.8 0.04 15.3 0.06 75.3 0.06

54

8.2. ZERO DESIRED POLAR ANGLE WITH MOVING LEADER

8.1.2 Angle offset start

Five data sets with gain set 2 were used the average of all the results is shown in

table D.6. The xy positions of the robot during one of the data sets is shown in D.6.

Table 8.2: Angle offset start results

Missdetection mean std dev

Leader[%] 94 1.9
Landmark[%] 88.2 2.3

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 7.8 0.18 23.2 0.06 21.1 0.08
Follower Estimate Pose 3.1 0.17 0.18 0.004 0.16 0.012
Leader Estimate Pose 38.5 3.4 2102.6 28.5 115 4.5

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 76.8 0.06 10.3 0.09 89.3 0.11

8.2 Zero desired polar angle with moving leader

8.2.1 In line start

Five data sets with gain set 1 were used the average of all the results is shown in

table 8.3. The xy positions of the robot during one of the data sets is shown in D.11.

8.2.2 Angle offset start

Five data sets were used the average of all the results is shown in table 8.4. The xy

positions of the robot during one of the data sets is shown in D.16.

55

8.2. ZERO DESIRED POLAR ANGLE WITH MOVING LEADER

Figure 8.1: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure 8.2: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)
56

8.2. ZERO DESIRED POLAR ANGLE WITH MOVING LEADER

Figure 8.3: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure 8.4: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)
57

8.3. NON ZERO DESIRED POLAR ANGLE

Table 8.3: In line start results

Missdetection mean std dev

Leader[%] 94. 1.8
Landmark[%] 91.1 2.2

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 8.3 0.19 1.4 0.01 2 0.04
Follower Estimate Pose 3.5 0.09 0.14 0.007 0.24 0.02
Leader Estimate Pose 16.1 1.4 13.2 1.4 65.2 0.8

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 57.8 0.05 44.5 1 10.3 4

Table 8.4: Angle offset start results

Missdetection mean std dev

Leader[%] 91.2 1.5
Landmark[%] 88.2 2.1

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 9.3 0.9 20.4 0.8 10.9 0.4
Follower Estimate Pose 4.2 0.7 0.8 0.8 0.44 0.5
Leader Estimate Pose 20.1 1.5 1907.4 22.4 112 7.8

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 64.7 0.6 10.3 0.9 15.3 1.1

8.3 Non Zero desired polar angle

8.3.1 φ = 10◦ with stationary leader

The desired polar angle is set to 10 degrees and starts out in a zero error start.

Three data sets were used the average of all the results is shown in table 8.5. The

xy positions of the robot during one of the data sets is shown in D.21.

58

8.3. NON ZERO DESIRED POLAR ANGLE

Table 8.5: Zero Angle offset start results

Missdetection mean std dev

Leader[%] 94.6 1.7
Landmark[%] 91.6 1.1

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 11.8 1.1 6.3 0.8 6.1 0.7
Follower Estimate Pose 4.8 0.9 0.9 0.6 0.54 0.5
Leader Estimate Pose 146 2.2 99 2.8 145.3 3.1

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 66.7 0.6 32.6 1.4 91.2 1.7

8.3.2 φ = 10◦ with moving leader

The desired polar angle is set to 10 degrees and starts out in a zero error start.

Three data sets were used the average of all the results is shown in table 8.6. The

xy positions of the robot during one of the data sets is shown in D.26.

Table 8.6: Zero Angle offset start results

Missdetection mean std dev

Leader[%] 92.4 1.3
Landmark[%] 87.6 1.7

Error in final state Postion x Postion y Heading θ
Value mean std dev mean std dev mean std dev

Follower Odometry Pose 45.1 2.1 6.2 0.9 7.1 0.5
Follower Estimate Pose 3.8 0.7 0.4 0.5 0.38 0.6
Leader Estimate Pose 19.2 0.9 45 3.4 100.3 2.8

Error in final state ρ φ γ
Value mean std dev mean std dev mean std dev

Relative Coord State 63.7 1.5 27.2 1.9 97.5 2.1

59

8.3. NON ZERO DESIRED POLAR ANGLE

Figure 8.5: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure 8.6: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)
60

Chapter 9

Discussion

9.1 Image Processing Algorithm

The designed markers provided the image identification algorithm with good data

sets to process. The real time identification algorithm performed with the same

accuracy, within a 5% bound, as the buffered preprocessing investigation’s results

even with the shaking of the Kinect due to the robot’s motion. It is therefore rea-

sonable to state the other investigated preprocessing method, using the Canny Edge

Detector, would perform with the same accuracy and so would still not be the op-

timal choice. The Canny Edge Detector performed with less identification accuracy

due to the binary image containing all the background’s edges which will contain

some circle like objects. These objects would be mistaken as the markers and thus

the algorithm would return invalid values thus decreasing the accuracy. The HSV

thresholding algorithm removes the entire background except for a certain colour

before applying the CHT, this drastically reduces the number of mismatches as the

chances of a same coloured circle like object being in the background is relatively

low. The optimisation methods improved the computation performance of the final

program but since the processor, i7 @ 2.2Ghz, being used was extremely powerful

this computation decrease was negligible.

The identification accuracy, and thus measurement data, mainly effected the esti-

mated relative coordinate state vector as the state could only be estimated through a

prediction using the dynamic model. So when measurement data is not available for

a while, the state will become inaccurate and even when measurement data becomes

available again it will take time to reconverge to the true state value. As the leader’s

61

9.2. STATE ESTIMATORS

pose state is updated through the estimated relative coordinate state, the belief of

the leader’s pose will also be effected. The consequences for the estimated follower’s

pose state is not as severe due to the odometry measurements still providing some

feedback on what happened in the environment.

9.2 State Estimators

9.2.1 Follower’ Pose Estimate

Two state estimators were investigated and designed to estimate the follower’s pose

amidst noisy measurements namely, the EKF and UKF. Both showed extremely

good results with different levels of noise covariances in the simulations, figures C.6

to C.11. The EKF and UKF produced very similar results with the low and medium

noise levels but the UKF far surpass the EKF with very high levels of noise. The

reason is due to the different ways the two estimators handle non-linearities. The

EKF linearises the functions into Jacobians and then uses them to parse the co-

variance matrices through, so if the covariance matrix’s values are large the result

of the linearisation will be very inaccurate. The UKF instead parses chosen sigma

points through the non-linear functions and reconstructs the covariance matrix on

the other side through weights so large variance values passed through are not so

inaccurate. The simulation results of the two estimators are expected as the liter-

ature [66] points to the UKF outperforming the EKF in the presence of high noise

levels.

As most formation control studies [43][59], which consider state estimators, use

the EKF and since the system’s variances were lower than the low noise level in the

simulations, the EKF was chosen as the state estimator in the final implemented

system. The state transition and state measurement noise model for the follower’s

pose was shown not to be explicitly Gaussian distributed but with more samples it

could tend towards being Gaussian. Even if the noise is not Gaussian given just the

variance the EKF could still be used to estimate the state. The EKF estimate of

the follower’s pose was extremely accurate to within the cm range in all states. The

results show using just the odometry pose data would of caused errors to grow in

all states over the course of the robots movements. This is expected due to the na-

ture of of using only one noisy measurement to estimate the state. The comparison

between the estimated pose and odometry pose differed significantly more when the

62

9.3. FORMATION CONTROL

robot travelled in the y direction with inaccuracies in the odometry pose of around

0.2m. This result was more than expected but the outcome was still expected due

to how errors propagate during motion, if the robot ideally moves along one axis

the error in the other axis will grow more. The accuracy of the estimated state pro-

vides a backwards proof to show the noise models used must resemble a Gaussian

distribution.

9.2.2 Relative Coordinate State’s Estimate

The estimate of the relative coordinate state was accurate when the follower started

out with a zero polar angle error, see figures D.1 and D.11. However, when the fol-

lower started with a non zero polar angle error the estimate of the relative coordinate

state was extremely in accurate, see figures D.6 and D.16. This result was not at all

expected as the simulations showed the EKF able to estimate the relative coordinate

state and thus the leader’s pose accurately up to the medium noise level. Since the

medium noise model is far more than the state transition and state measurement

noise model derived in the System Modelling section, it cannot be the variance value

of the noise. A likely explanation for this result, is as the state transition model is a

function of the follower’s and leader’s velocities, the accuracy of the predicted state

in the EKF is dependent on the estimation of the follower’s and leaders velocities.

Since the follower’s pose estimation was accurate so will be its estimated velocity,

meaning since the leader’s pose is measured through visual data only any difference

between measurements will result in a estimated velocity for the leader. So even if

the leader is stationary, the estimator will produce changes in the leader’s pose and

over time the error will grow.

9.3 Formation Control

The chosen controller from study [47] was shown to drive the errors towards zero

through a Lyapunov function by manipulating the gain values. The simulations

of just the controller showed the formations are kept when the leader’s trajectory

is linear or circular. These simulations showed how the manipulation of the gain

constants effected the final error bound and the error convergence rate, figures C.2

and C.4, as well as the velocity command inputs to the iRobot, figures C.3 and C.5.

The gain effects on the final error bound and convergence rate was expected from

the proof but the initial velocities show too much increase in gain would surpass the

63

9.4. COMPARISON TO LITERATURE RESULTS

velocity magnitude constraints of the iRobot’s wheels.

The simulated controller and state estimators, figures 7.3 and 7.4, finally show how

the entire system can perform complex formation control in the presence of low and

high levels of noise. Even if the estimate of the relative coordinate state is inaccu-

rate the controller will still drive the states towards set desired relative coordinates.

The controller performed as expected in this aspect as all the data set’s relative

coordinates are driven towards the desired values within some arbitrary bound de-

termined by the gain sets used. The Kinect’s FOV prevented the testing of desired

polar angles greater than roughly 30 degrees as the leader would be seen in the RGB

image but not in the depth image.

9.4 Comparison to literature results

Since this study uses a specific type of controller to achieve formation control, the

results of the controller can therefore be compared to other types in literature. Due

to the limitations imposed on this study only some of the implementation results can

be compared the rest will be from the simulation section. The final error bound in

the relative states from study [35] is lower than that of this study’s. However, since

they linearised the system the ability to switch between different leader trajectories

was extremely poor compared to simulated results of this study. The ability of study

[42] to switch formations was extremely impressive compared to the simulations of

this study, as the use of MPC allowed a better switching follower trajectory where

the error will not exceed the maximum as it sometimes would in this study.

9.5 Final System

9.5.1 Fulfilment of primary objectives

The selected controller was shown to achieve complex formation control in simu-

lations where the states are estimated with the modelled noise from the complete

modelling of the system. The feature identification and measurement algorithms

could locate and measure the leader and landmarks with accuracy determined only

by the sensor’s constraints. The localisation algorithms were able to accurately lo-

calise the follower and the leader up to a certain point determined by the initial

64

9.5. FINAL SYSTEM

starting conditions of the system. The final designed system when implemented is

able to maintain a formation from a both a zero starting error as well as starting

error in the polar coordinates of the relative coordinate state. The ability to test a

desired relative polar angle greater than 30◦ was constrained by the Kinect’s FOV

but as it worked for an angle of 10◦ it should be able to achieve greater desired

angles with a different sensor set-up.

9.5.2 Fulfilment of secondary objectives

The design of the simple yet robust markers for the identification algorithms allowed

the algorithms to not be hindered by the point of view of the follower. The meth-

ods of optimisation allowed the computation burden of the algorithms to slightly

decrease.

65

Chapter 10

Conclusions

This study systematically approached the leader-follower formation control of two

iRobotCreates through the use of visual feedback to produce a design which allows

the desired specifications to be achieve. The image processing side of the study

was not the main aspect so instead of a complicated feature detecting algorithm,

a simple yet robust marker based algorithm was designed. The study had several

quite severe limitations imposed from the start but these were overcome by first

simulating the entire system to show extremely adequate results and then following

up with the physical implementation. Even with the imposed physical limitations

the final implemented design performed adequately well in relation to the scope of

the project’s objectives.

10.1 Primary Objectives

The investigation and thus design of the feature identification adequately provided a

identification rate of around 90% for both the leader and landmarks. The measure-

ment equations produced state measurements whose accuracy is only determined by

the accuracy of the sensors.

The iRobot’s type of motion was sufficiently analysed so as to better model the

system and thus improve the control design. The proposed noise models for the

follower’s pose state and the relative coordinate state estimation were adequately

modelled and the follower’s pose noise models were validated by the final imple-

mented results.

The simulated system performed perfectly with the modelled system noise and was

even shown to still operate in amidst higher levels of noise than that of the physical

66

10.2. SECONDARY OBJECTIVES

system.

The localisation algorithm produced accurate state estimates of the follower’s pose in

all testing scenarios. The localisation algorithm for the relative coordinates produced

adequate state estimates of the leader’s pose only in certain testing scenarios. The

selected controller performed as expected from the design in both the simulations

and implementation and so was an adequate controller to meet the specifications of

the system.

10.2 Secondary Objectives

The markers designed and used provided the necessary robustness for accuracy of

their identification to only depend on the image processing algorithms. The opti-

misation of the algorithms illustrated ways of how to implement the algorithms on

systems constrained by processing speeds.

67

Appendix A

Software Design

Figure A.1: Cosine Rule

α = arccos
Robot2length + Z2

right − Z2
left

2(Robotlength)(Zright)

β = arccos
Robot2length + Z2

left − Z2
right

2(Robotlength)(Zleft)

68

Appendix B

Control

B.1 Motion Model Theory

The following explanations are based on the Computational Principles of Mobile

Robotics by Dudek and Jenkin [67] and the author’s (UCT)MEC2023F Dynamics I

notes.

Velocity-based

The iRobotCreate robotic platform is part of a common wheeled robot class which

ideally moves through 2D space with what is known as Differential Drive Kinematics

(DDK). The velocity-based motion model is centered around these ideal kinematics.

Most ground vehicles use a drive mechanism known as differential drive, where two

drive wheels are mounted on a common axis and each wheel can be rotated inde-

pendently. When the common axis is rotated the wheels will be rotated about a

point which lies along the axis, this point is known as the Instantaneous Center of

Curvature (ICC), see figure B.1.

So therefore by varying the velocities of the two wheels we can vary the trajectory

the robot takes. Since the rate of rotation ω about the ICC is the same for both

wheels, we can write:

ω(R +
l

2
) = Vr (B.1)

ω(R− l

2
) = Vl (B.2)

where l is the distance between the wheel centers, Vr and Vl are wheels velocities

along the ground and R is the radius from the ICC to the center of the robot. So

69

B.1. MOTION MODEL THEORY

Figure B.1: Instantaneous Center of Curvature [67]

therefore we can at any time write:

R =
l

2

Vr + Vl
Vr − Vl

(B.3)

ω =
Vr − Vl

l
(B.4)

If Vr=Vl the robot will move with a constant velocity in a straight line. R becomes

infinite and ω is zero. If Vr=−Vl then R = 0 and the robot rotates around its center

with ω. If either Vr = 0 or Vl = 0 then we will have a rotation around the right or

left wheel respectively with R = l
2
.

The forward kinematics of a differential drive is relatively straight forward. If the

current pose (x,y,heading θ) and each wheel’s ground velocity is known we can define

the following using equation B.3 and B.4:

ICC@t = [x−R sin(θ), y +R cos(θ)] (B.5)

Therefor at time t+ ∆t the robot’s pose will be:∆x

∆y

∆θ

 =

cos (ω∆t) − sin (ω∆t) 0

sin (ω∆t) cos (ω∆t) 0

0 0 1


x− ICCxy − ICCy

θ

 +

ICCxICCy

ω∆t

 (B.6)

This equation simply describes the motion of the robot rotating a distance R about

is ICC with an angular velocity ω.

The inverse is a lot more tricky as it deals with what commands we should send

70

B.1. MOTION MODEL THEORY

in order to move the robot to a certain location. The differential drive imposes

non-holonomic constraints on establishing position, meaning it cannot traverse per-

pendicular to its heading direction. The simplest method to perform only navigation

to certain goal pose would be through a series of rotations about its center and linear

traversing. However this formation control application will not require it to perform

rapid manoeuvres which the non-holonomic constraints would prevent but rather

follow the reference trajectory i.e. the leader. The iRobotCreate uses serial com-

munications at a predefined baud rate via operational codes. The op code, 137, to

actuate the wheels takes two 16-bit signed values using two’s complement. The first

two bytes specify the average velocity of the drive wheels in mm/s, the next two bytes

specify the radius in millimeters at which Create will turn. This command data will

allow the iRobotCreate to perform its differential drive kinematics or velocity-based

motion model. The longer the radii the more straight the Create will drive, while

shorter radii make the Create turn more. The radius is measured from the center of

the turning circle (ICC) to the center of Create. A Drive command with a positive

velocity and a positive radius makes the Create drive forward while turning toward

the left and vice versa. Special cases for the radius make the Create turn in place or

drive straight [68]. ROS abstracts this communication, it converts the user specified

ROS Geometry msg Twist velocity command into the right format for op code 137.

The average velocity op code parameter is the specified Twist.linear.x where as the

radius is described by:

R =
Twist.linear.x

Twist.angular.z

Vr + Vl
2

= Twist.linear.x (B.7)

However to simplify the steps from the user specified commands through ROS to

the 137 op code and finally to the DDK motion, the motion model in terms of the

applied ROS Geometry msg Twist velocity command using the sets of equations

above becomes:∆x

∆y

∆θ

 =

−R sin θ +R sin (θ + Twist.angular.z∆T)

R cos θ −R cos (θ + Twist.angular.z∆T)

Twist.angular.z∆T

 (B.8)

Odometry-based

There are a number of reasons for motion errors such as bumps, different wheel

diameters etc. so this is where odometry comes in. An Odometry-based motion

model calculates the present pose through the use of wheel encoders. A wheel

encoder sensor outputs a high when the sensor sees the white strip and low when it

71

B.2. SENSOR MODEL THEORY

sees the black strip. There are two popular types of encoders namely, incremental B.2

and absolute B.3. The difference being with incremental encoders, you can measure

only changes in position (from which you can determine velocity and acceleration),

but it is not possible to determine the absolute position of an object. The absolute

encoder is capable of determining the absolute position of an object due to each

ring of the absolute encoder having double the number of segments of the prior ring,

the values form numbers for a binary counting system. Encoders allow the robot to

keep track of how much each wheel has rotated over a certain time interval.

Figure B.2: Wheel Encoder [67] Figure B.3: Absolute Wheel Encoder [67]

The iRobotCreate sensors can be queried through the right op codes to access all

the different sensor readings. Through packet ID 19 and 20 the distance and angle

change from the last query can be accessed. The iRobotCreate produces these values

through measuring the distance travelled by each wheel through the encoder and

using the DDK motion equations produces the change in pose. ROS abstracts this

information and publishes it in the /odom topic where the current pose is updated.

There are a couple of odometry models such as [69] where each iteration of extracted

odometry data is a 3 step transformation between xt and xt−1 where by δrot1 is the

initial turn, δtrans is the linear translation and δrot1 is the final turn in the time

interval. With this different noise models can be used but since ROS abstracts the

odometry data it is sufficient to just use the change in pose from the /odom topic

for the odometry data.

B.2 Sensor Model Theory

The type of sensor is classified as a range bearing type whereby the measurements

are in the form of the radius and angle to the landmark from the point of the

follower’s frame, shown below:

72

B.3. ACTUATOR AND SENSOR NOISE MODEL

Figure B.4: Sensor Model

z =

[
r

φ

]
The general sensor limitations would be the maximum and minimum range plus

what its field of view is. The robot only measures the landmark in its reference fram

and so to compare it to the stored position of the landmark in the global reference

frame, it must undergo a transformation. The transformation is simply a rotation

matrix and is defined as follows:

z =

[
xglobal

yglobal

]
=

[
cos θ − sin θ

sin θ cos θ

][
r cosφ

r sinφ

]

B.3 Actuator and Sensor Noise Model

There are two different states to be estimated with two different state transition

models namely, follower’s motion model and the change in the relative coordinates

as well as two different state measurement models for the follower’s pose and relative

coordinates. These covariance matrices are determined and outlined in the following

sections.

B.3.1 State Transition Measurement

Follower’s Pose (Motion Model)

The iRobotCreate will be ”step tested” to find out the probability distribution of the

robot measuring the change in its odometry from the ROS /odom topic compared to

what the true change in odometry data is. The true odometry data will be measured

73

B.3. ACTUATOR AND SENSOR NOISE MODEL

with ruler/protractor over each iteration of the robot moving. Comparing the true

measurement and the odometry measurement will result in an error which will be

plotted for each measured pose state to determine the properties of its probability

distribution function. (p.d.f)

Due to how the x and y positions of the pose change depending on the heading

direction at the time, the error in the odometry measurement for the change in x

and y will depend on which way the robot is heading. The proposed noise model

assumes that there is no relation between the two errors meaning the error mea-

surement of both is the same regardless of the heading direction, thus the error in

measuring the change in positions x and y will be the same. Since the error in

measuring the change in angle is just related to the angular velocity it will have its

own p.d.f.

To determine the error in measuring state x and thus y the iRobotCreate will

receive velocity commands [V = 0.1, ω = 0] for 0.1 seconds by publishing to the

/navi topic. After each step the measured value will be recorded against the /odom

topic’s value and the error will be stored. The same will be done for determining the

angular measuring error except the velocity command will [V = 0, ω = 1] again for

0.1 seconds. The experimental set-up is shown in figures B.5 to B.7, the resulting

histograms with the means and standard deviations for the position and angular

errors are shown in figures B.8 and B.9 respectively.

The covariance matrix is thus defined as follows:

Rt =

0.00642 0 0

0 0.00642 0

0 0 0.0352



74

B.3. ACTUATOR AND SENSOR NOISE MODEL

Figure B.5: Start position of the step tests

Figure B.6: Measuring the data

Figure B.7: Markers after step tests

75

B.3. ACTUATOR AND SENSOR NOISE MODEL

Figure B.8: Error for change in position state

Figure B.9: Error for change in angular state

Relative Coordinates’ Noise Model

Since the change in the relative coordinates, see System Modelling section, is a func-

tion of the velocities of the follower and leader which are estimated, the transition

of the relative coordinate state’s error will also be a function of the error in the

estimated velocities. The limitation of not having an aerial webcam to monitor the

robots poses and thus the relative coordinates makes it very difficult to determine

the relative coordinate state’s transition covariance matrix. Reasonable values were

chosen at first and then tweaked with the final design’s estimated covariance matrix

from the EKF after the program had run, the final ”optimal” covariance matrix is

as follows:

Rt =

0.00782 0 0

0 0.00542 0

0 0 0.0482



76

B.3. ACTUATOR AND SENSOR NOISE MODEL

B.3.2 Vision Measurement of State

Follower’s Pose Vision Measurement Noise Model

The noise model used in this thesis for the Kinect comes from study [70]. They

determined the covariance matrix for the measurement error in 3D data provided

by the Kinect i.e. pixel positions [x,y] and depth to that particular pixel. Since

the sensor model is a range/bearing type where the range is measured directly

from the depth image and the bearing is calculated by the offset in the x direction

pixels with a real world proportional ratio, see Image Processing section. Only the

standard deviations for the depth and pixel position x error will be used for the

sensor’s covariance matrix. These values would be different to if step like tests were

performed on this particular Kinect but due to the limit on time and the fact that

both the study’s Kinect and this thesis’s Kinect were calibrated the results should

be relatively similar. I note that the bearing angle is only a function of the x pixel

position but it should provide a reasonable covariance matrix and is as follows:

Qt =

[
0.0332 0

0 0.0282

]

Relative Coordinates’ Vision Measurement Noise Model

Since the relative coordinates is just the range and bearing measured value plus the

difference in heading. The covariance values used for measuring the landmarks to

update the follower’s pose can be used for the range and bearing measurement for

the relative coordinates. The third state γ is calculated in a similar way and so the

same variance value used for the bearing /phi will be used. The noise covariance

matrix is thus:

Qt =

0.0332 0 0

0 0.0282 0

0 0 0.0282



77

B.4. CONTROLLER PROOF

B.4 Controller Proof

The study [47] only provides a short proof to validate the chosen control laws as it

is a IEEE paper with a page limit. This appendix provides a much more indepth

explanation and derivation for the control laws used so as to gain a better under-

standing of the control system. I note that there is an error in the study in the

proof section where they miss print the error value |ε1| as |q1| where |q1| is the rel-

ative coordinate ρ. However, this the controller is still valid with the following proof.

A quadratic Lyapunov function candidate is proposed:

V =
1

2
εTPε (B.9)

where P is the 3x3 matrix representation of a symmetric positive definite trans-

formation with entries are zero except for the diagonal and p12 and p21. Where

p12 = p22
t2
q1

, t2 = tan q2.  p11 p22
t2
q1

0

p22
t2
q1

p22 0

0 0 p33

 (B.10)

P is only positive definite if and only if its diagonal entries are positive and condition:

p11 − p22(
t2
q1

)2 > 0 (B.11)

which is derived from Sylvester’s positive definite matrix proof. Since it is a 3x3

hermitian matrix there will be 3 steps (i.e 3 sub matrix determinant conditions)

First: p11 > 0

Second: p11p22 − p222(t2q1)2 > 0 simplifies to p11 − p22(t2q1)2 > 0 which is B.11

Third: p22p33[p11 − p22(t2q1)2] > 0 which just restates p22 and p33 must be > 0

Equation B.11 is guaranteed to hold by the 5.6 in the Controller Selection section.

Through differentiating B.9 along the trajectories of the ε vector using equation

5.2 from the System Modelling section. Then collecting the vL, ωL, vF and ωF

terms produces the differential potential energy function B.13. The beginning of

this derivation is shown in B.12 but it is left out as it is just a matter of standard

differentiating and grouping like terms.

δV =
1

2
[δεTPε+ εT δPε+ εTPδε] (B.12)

[1] δV = (Λ1ε1 + Λ2ε2ε3)vf

78

B.4. CONTROLLER PROOF

[2] − (p22
t2
q1
ε1 + p22ε2 + p33ε3 +

p22
q1c22

ε1ε2)ωF (B.13)

[3] + (Θ1ε1 + Θ2ε2 + Θ3ε1ε2)vL

[4] + p33ε3ωL

where:

Λ1 = (−p11c2 + p22
s22
q21c2

)

Λ2 =
p22
q21

(
s2
c22

+ s2)

Θ1 = (p11c2 + p22
t2s32
q21

) (B.14)

Θ2 =
p22
q1

sin q3
cosq2

Θ3 =
p22
q21

(
s32
c22
− t2c32)

With the control laws selected 5.4 and 5.5 the first two terms become negative semi-

definite. The condition 5.6 is necessary so that the only null space of v is ε = 0 this

will ensure ε1 → 0 as t→∞. The condition is derived as follows:

From [1] Λ1 + Λ2ε2 6= 0

This implies the LHS must be either > 0 or < 0. This condition can be shown just

by substituting in the relevant constants from B.14 and simplifying, shown below:

−p11c2 + p22
s22
q21c2

+
p22
q21

(
s2
c22

+ s2)ε2

They chose that the above equation is > 0 so as to satisfy the Sylvester’s condition

refSly as well hence the 5.6 condition satisfies both.

• Discussion One

The [1] term in B.13 can dominate the forcing terms [3] and [4] with a large

enough k1 if |ε1| ≥ ε1 for all ε > 0 so that δV < 0, remember ε is the error

state used in the Lyapunov function. Given k1 > 0 there will be an ε > 0

such that if ε < ε, the forcing terms cannot be dominated by [1]. In this case,

the second term [2] can be used unless by the same logic above there exists a

k2 > 0 such that p22ε2 + p33ε3 < ε2 for some ε2 such that −k2ε22, like ε1, is also

very close to zero.

This discussion implies the states ε tend to a neighbourhood set N where

79

B.5. KALMAN FILTERING

ε1 = 0 and p22ε2 + p33ε3 = 0, which when thinking back to the non-holonomic

constraints makes sense.

• Discussion Two

If the leader is travelling in a straight line ωL = 0 then since ε1 < ε1 is the

only term in [3] that could be large is Θ2ε2. Θ2 is an odd function (sine in

numerator) of ε3 with Θ2 < 0 if ε3 < 0. This means ε3Θ2 > 0 for all ε3. Now

in the set N we have ε2 = −p33
p22
ε3 since p22 and p33 are positive constants, we

have Θ2ε2 < 0 thus δV < 0 (negative definite) when ωL = 0.

• Discussion Three

If however, ωL 6== 0 the fourth term [4] can be positive. This is over

come through the negative definite function Θ2ε2, remember this relation

ε2 = −p33
p22
ε3. So two conditions can overcome this positive term [4], (1) p33

p22
> 1

or (2) p33
p22

< 1 and |ωL|
vL

< 1
q1

then there exists q3 s.t

| sin q3
cos q2

| > q1
ωL
vL

= κq1

This shows the need for conditions 5.7 or 5.8. Condition (1) is used for when

the leader is performing basic manoeuvres however when the leader is per-

forming more complex motion where it is not just straight or in a circle. The

bounds on the states can be tightened by going through the same above pro-

cedure and using the supremum of the complex curvature motion.

B.5 Kalman Filtering

So what is a Kalman filter and what can it do. The actual Kalman filter is an opti-

mal recursive estimator i.e it infers parameters of interest from indirect, inaccurate

and uncertain observations. It is optimal due to it minimising the mean square error

of the estimated parameters if all noise is Gaussian and is recursive in the sense it

only uses the previous estimate to update with the current measurements. Even if

the noise is not Gaussian, given only the mean and standard deviation of the noise

the Kalman filter is still the best linear estimator however other estimators such as

particle filters might be better.

80

B.5. KALMAN FILTERING

Probabilistic Foundation

In any autonomous system decisions are often based probabilities. So if the proba-

bility of the outcome of a decision or in our case motion is known there are certain

facts that the system can make about what happened after the motion, this type of

approach is known as a Bayesian network. The goal of state estimation is to estimate

the state x of a system given observations z and control u. The following equations

show how a belief of a state can be found through probabilities, the following is the

recursive Bayes filter:

bel(xt) = p(xt|zt, ut) This is the definition of the belief

bel(xt) = ηp(zt|xt, zt−1, ut)p(xt|zt−1, ut) Baye′s Rule/Theorem

bel(xt) = ηp(zt|xt)p(xt|zt−1, ut) Markov assumption

The Markov assumption is simply that we define that the transition from one state

to the next is not dependant on the previous states. This property is assumes the

system is ”memoryless”, meaning the p.d.f of the next state only relies on the current

state not the previous sequence of events leading to that transition.

bel(xt) = ηp(zt|xt)
∫
xt−1

p(xt|xt−1, zt−1, ut)p(xt−1|zt−1, ut)δxt−1 Law of total probability

The law of total probability is the fundamental rule for relating marginal probabil-

ities to conditional probabilities where the total probability is just the sum of the

individual events.

bel(xt) = ηp(zt|xt)
∫
xt−1

p(xt|zt−1, ut)p(xt−1|zt−1, ut−1)δxt−1 Markov assumption

bel(xt) = ηp(zt|xt)
∫
xt−1

p(xt|zt−1, ut)bel(xt−1)δxt−1 recursive nature

This means the Bayes filter can be shown to have two steps namely, a prediction

B.15 and then a correction B.16.

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1) (B.15)

bel(xt = ηp(zt|xt)bel(xt−1) (B.16)

Clearly the motion model is used to predict the state, p(xt|ut, xt−1), and the mea-

surement model is used to correct the prediction p(zt|xt). So the motivation behind

81

B.5. KALMAN FILTERING

showing the Bayes Filter is to illustrate that the Kalman Filters are just special

cases of the Bayes Filter where the p.d.f is a Gaussian distribution.

Gaussian

A Gaussian is just a normally distributed p.d.f with a mean and variance, shown in

equation B.17 and figure B.10.

p(x) N(µ, σ2) p(x) =
1

√
2πσe−

1
2

(x−µ)2
σ2

(B.17)

If there is more than one state it is multivariate function. Where the variance for the

univariate case σ2 becomes a covariance Σ where the dependency for each state on

each other state is take into account. For the two state case the co-variance matrix

can be modelled as an ellipse where the eigen values of the matrix determine the

shape of the ellipse, it would be a sphere for a three state case etc. The bivariate

case is shown in figure B.11.

Figure B.10: Wheel Encoder [67] Figure B.11: Absolute Wheel Encoder [67]

When a Gaussian p.d.f is passed through a linear function it retains the Gaussian

distribution. When it parses through a non-linear function is becomes distorted

according to how hard the non-linearity is and is no longer Gaussian distributed.

This is the motivation to linearise a system so as to be able to carry on using the

standard linear Kalman Filter.

Kalman Filters

Through understanding the probabilistic foundation the Kalman Filter is simply

just a Bayes Filter for Gaussian distributed systems. So the Kalman Filer steps

82

B.5. KALMAN FILTERING

follow the very same logic where there is a prediction of the next state through the

state transition model, our case the motion model, and an update/correction using

a measurement to correct the predict state. The Extended Kalman Filter (EKF)

is exactly the same as the original Kalman Filter just with a linearised system.

Following the Bayes Filter steps the EKF just becomes a matter of laying out the

equations, shown below:

xt = g(ut, xt−1)

Σt = GtΣt−1G
T
t +Rt

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1

xt = xt +Kt(zt − h(xt))

Σt = (I −KtHt)Σt

(B.18a)

(B.18b)

(B.18c)

(B.18d)

(B.18e)

The functions g and h are the motion model and observational model respectively,

the functions G and H are the Jacobians of each of the respective models. The ma-

trices R and Q are the noise, modelled from the Actuator and Sensor Noise Model

section, added for a state transition and measurement respectively.

Another type of Kalman Filter is called the Unscented Kalman Filter (UKF) which

attempts to obtain a more accurate linearisation by using multiple samples to cal-

culate the covariance. It uses the unscented transform (UT) which is a method for

calculating the statistics of a random variable which undergoes a non-linear transfor-

mation. So instead of passing a single point through the action transition function

and shaping the covariance, it passes multiple points through the action transition

function and calculates the covariance from scratch using the transformed points. A

primitive version of this filter might use a large number of samples and calculate the

covariance and mean of the posterior distribution by brute force. When all of the

distributions involved Gaussian, it is possible to construct the posterior Gaussian

using a few specifically selected samples. These deterministically selected samples

are referred to as sigma points. These sigma points can completely capture the true

mean and covariance of the Gaussian variables, and when propagated through the

non-linear system, captures the posterior mean and covariance accurately up to the

third order Taylor series expansion.

The sigma point selection is influenced by three parameters:

• α (alpha) determines the spread of the distance of the sample points from the

mean of the prior.

83

B.5. KALMAN FILTERING

• β (beta) determines how much weight is given to the mean when calculating

the new Gaussian.

• κ (kappa) is a secondary scaling parameter normally associated with the con-

trolling the spread of the sigma points, usually set to zero

The following equations governs how the sigma points are chosen through the above

parameters and how the posterior covariance matrix is reconstructed. The steps for

the UT are shown below where µ and Σ are the mean and covariance of the state:

X0 = µ

Xi = µ+
√

(L+ λ)Σ i = 1, ..., L

Xi = µ−
√

(L+ λ)Σ i = L+ 1, ..., 2L

λ = α2(L+ κ)− L

w[0]
m =

λ

L9λ

w[0]
c = w[0]

m + (1− α2 + β)

w[i]
m = w[i]

c =
1

2(L+ λ)
i = 1, ..., 2L

(B.19a)

(B.19b)

(B.19c)

(B.19d)

(B.19e)

(B.19f)

(B.19g)

The UT parameters are generally set as:

• κ ≥ 0

• α ∈ (0, 1]

• β = 2 optimal choice for Gaussians

Where X are the chosen sigma points, wm and wc are the mean and covariance

weights respectively. Steps 2 and 4 of B.19 require the square root of the covariance

matrix. There are a couple of ways to accomplish that, the most common way is

through the Cholesky decomposition. Where a diagonalising matrix V with the

eigen vectors is used to calculate the square root. The chosen sigma points and

weights from the UT are then used in the UKF algorithm which is very similar to

the EKF steps as it is still based on probability foundation and are as follows:

84

B.5. KALMAN FILTERING

Prediction

X t = g(Xt−1, u)

µt =
2L∑
i=0

w[i]
mX

[i]

t

Σt =
2L∑
i=0

w[i]
c (X

[i]
t − µt)(X

[i]
t − µt)T +Rt

Correction

Zt = h(X t)

zt =
2L∑
i=0

w[i]
mZ

[i]

t

St =
2L∑
i=0

w[i]
c (Z

[i]
t − zt)(Z

[i]
t − zt)T +Qt

Σx,z
t =

2L∑
i=0

w[i]
c (X

[i]
t − µt)(Z

[i]
t − zt)T

Kt = Σx,z
t S−1t

µt = µt +Kt(zt − zt)

Σt = Σt −KtStK
T
t

(B.20a)

(B.20b)

(B.20c)

(B.20d)

(B.20e)

(B.20f)

(B.20g)

(B.20h)

(B.20i)

(B.20j)

(B.20k)

(B.20l)

85

Appendix C

Simulation Results

Appendix Navigation

Figure C.1 is the Simulink Model

• [1]: Pose updater block

• [2]: Calculate relative coordinates

• [3]: Calculate velocity commands

Figures C.2 to C.3 is the controller only simulations

• red: Leader

• blue: Follower

Figures C.6 to C.11 is the EKF and UKF simulations for the follower’s pose only

• blue: Actual Follower’s path taken

• green: Estimated Follower’s path taken

• black: Actual Follower’s path taken

• red: Estimated Follower’s path taken

Figures C.12 to C.14 is the EKF simulations for the leader’s pose

• black: Actual Follower’s path taken

• red: Estimated Follower’s path taken

86

Figure C.1: Controller’s Simulink Model

87

Figure C.2: Linear Leader Velocity:Errors

Figure C.3: Linear Leader Velocity:Follower velocities

Figure C.4: Circular Leader Trajectory:Errors

Figure C.5: Circular Leader Trajectory:Follower velocities

88

Figure C.6: EKF high noise Figure C.7: EKF medium noise

Figure C.8: EKF low noise Figure C.9: UKF high noise

Figure C.10: UKF medium noise Figure C.11: UKF low noise

89

Figure C.12: EKF high noise

Figure C.13: EKF medium noise Figure C.14: EKF low noise

90

Figure C.15: Error in relative coordinate ρ

Figure C.16: Error in relative coordinate φ

Figure C.17: Error in relative coordinate γ

91

Appendix D

Implementation Results

Note: All position values and angular values in the following tables are absoluted

and in [×10−3m] and [×10−3rad] respectively. Gain Sets

Table D.1: Gain Sets

Gain Set Number k1 k2

1 0.14 0.01
2 0.07 0.2

D.1 Zero desired polar angle with stationary leader

D.1.1 In line start

Plots of one of the datasets are shown in figures D.1 to D.5.

D.1.2 Angle offset start

Plots of one of the datasets are shown in figures D.6 to D.10.

92

D.1. ZERO DESIRED POLAR ANGLE WITH STATIONARY LEADER

Figure D.1: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.2: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.3: Difference in Odom and Est
Pose(Black=theta)

Figure D.4: Relative error from
desired(Black=ρ)

Figure D.5: Relative error from
desired(Green=φ,Blue=γ)

93

D.1. ZERO DESIRED POLAR ANGLE WITH STATIONARY LEADER

Figure D.6: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.7: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.8: Difference in Odom and Est
Pose(Black=theta)

Figure D.9: Relative error from
desired(Black=ρ)

Figure D.10: Relative error from
desired(Green=φ,Blue=γ)

94

D.2. ZERO DESIRED POLAR ANGLE WITH MOVING LEADER

D.2 Zero desired polar angle with moving leader

D.2.1 In line start

Plots of one of the datasets are shown in figures D.11 to D.15.

D.2.2 Angle offset start

Plots of one of the datasets are shown in figure D.16 to D.20.

D.3 Desired polar angle = 10

D.3.1 Stationary leader

Plots of one of the datasets are shown in figure D.21 to D.25.

D.3.2 Moving leader

Plots of one of the datasets are shown in figure D.26 to D.30.

95

D.3. DESIRED POLAR ANGLE = 10

Figure D.11: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.12: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.13: Difference in Odom and Est
Pose(Black=theta)

Figure D.14: Relative error from
desired(Black=ρ)

Figure D.15: Relative error from
desired(Green=φ,Blue=γ)

96

D.3. DESIRED POLAR ANGLE = 10

Figure D.16: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.17: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.18: Difference in Odom and Est
Pose(Black=theta)

Figure D.19: Relative error from
desired(Black=ρ)

Figure D.20: Relative error from
desired(Green=φ,Blue=γ)

97

D.3. DESIRED POLAR ANGLE = 10

Figure D.21: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.22: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.23: Difference in Odom and Est
Pose(Black=theta)

Figure D.24: Relative error from
desired(Black=ρ)

Figure D.25: Relative error from
desired(Green=φ,Blue=γ)

98

D.3. DESIRED POLAR ANGLE = 10

Figure D.26: Topview (Red=leader,Blue=Odom Pose,Green=Est Pose)

Figure D.27: Difference in Odom and Est
Pose(Blue=x,Red=y)

Figure D.28: Difference in Odom and Est
Pose(Black=theta)

Figure D.29: Relative error from
desired(Black=ρ)

Figure D.30: Relative error from
desired(Green=φ,Blue=γ)

99

Bibliography

[1] J. Green, “Mine rescue robots requirements outcomes from an industry work-

shop,” in Robotics and Mechatronics Conference (RobMech), 2013 6th, pp. 111–

116, IEEE, 2013.

[2] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro,

T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, et al., “Gamma-ray

irradiation test of electric components of rescue mobile robot quince,” in Safety,

Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium

on, pp. 56–60, IEEE, 2011.

[3] M. Martin, P. Klupar, S. Kilberg, and J. Winter, “Techsat 21 and revolution-

izing space missions using microsatellites,” 2001.

[4] Z. Chen, T. I. Um, and H. Bart-Smith, “Modeling and control of artificial

bladder enabled by ionic polymer-metal composite,” in American Control Con-

ference (ACC), 2012, pp. 1925–1930, IEEE, 2012.

[5] D. Richert and J. Cortés, “Optimal leader allocation in uav formation pairs

ensuring cooperation,” Automatica, vol. 49, no. 11, pp. 3189–3198, 2013.

[6] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of

agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4, pp. 287–300, 2013.

[7] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”

in ACM Siggraph Computer Graphics, vol. 21, pp. 25–34, ACM, 1987.

[8] A. Khamis, “Minesweepers uses robotics awesomeness to raise awareness about

landmines & explosive remnants of war,” 2015.

[9] J. J. Wray, “Gale crater: the mars science laboratory/curiosity rover landing

site,” International Journal of Astrobiology, vol. 12, no. 01, pp. 25–38, 2013.

100

BIBLIOGRAPHY

[10] E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza, “Aerial-guided nav-

igation of a ground robot among movable obstacles,” in Safety, Security, and

Rescue Robotics (SSRR), 2014 IEEE International Symposium on, pp. 1–8,

IEEE, 2014.

[11] S. Latscha, M. Kofron, A. Stroffolino, L. Davis, G. Merritt, M. Piccoli, and

M. Yim, “Design of a hybrid exploration robot for air and land deployment

(herald) for urban search and rescue applications,” in Intelligent Robots and

Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 1868–

1873, IEEE, 2014.

[12] F. Azis, M. Aras, M. Rashid, M. Othman, and S. Abdullah, “Problem identifi-

cation for underwater remotely operated vehicle (rov): A case study,” Procedia

Engineering, vol. 41, pp. 554–560, 2012.

[13] S. J. Thomalla, M.-F. Racault, S. Swart, and P. M. S. Monteiro, “High-

resolution view of the spring bloom initiation and net community production

in the subantarctic southern ocean using glider data,” ICES Journal of Marine

Science: Journal du Conseil, 2015.

[14] “Fastwave becomes australian distributor of kongsberg seaglider sys-

tem.” http://subseaworldnews.com/2014/08/20/fastwave-becomes-australian-

distributor-of-kongsberg-seaglider-system/. Accessed: 2015:10:01.

[15] D. P. M. Dr. Seb Swart, “Robot to test health of oceann ’lungs’.”

http://socco.org.za/news/robot-to-test-health-of-ocean-lungs/. Accessed:

2015:10:01.

[16] Y. Chen and Z. Wang, “Formation control: a review and a new considera-

tion,” in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ

International Conference on, pp. 3181–3186, IEEE, 2005.

[17] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot

teams,” Robotics and Automation, IEEE Transactions on, vol. 14, no. 6,

pp. 926–939, 1998.

[18] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception,

behavior,” in Proceedings of the 21st annual conference on Computer graphics

and interactive techniques, pp. 43–50, ACM, 1994.

101

BIBLIOGRAPHY

[19] L. L. He and X. C. Lou, “Study on the formation control methods for multi-

agent based on geometric characteristics,” in Advanced Materials Research,

vol. 765, pp. 1928–1931, Trans Tech Publ, 2013.

[20] W. Li and W. Shen, “Swarm behavior control of mobile multi-robots with wire-

less sensor networks,” Journal of Network and Computer Applications, vol. 34,

no. 4, pp. 1398–1407, 2011.

[21] J. D. Jeon and B. H. Lee, “Multi-robot formation shape control using convex

optimization and bottleneck assignment,” Journal of Industrial and Intelligent

Information Vol, vol. 2, no. 1, 2014.

[22] M. Sisto and D. Gu, “A fuzzy leader-follower approach to formation control

of multiple mobile robots,” in Intelligent Robots and Systems, 2006 IEEE/RSJ

International Conference on, pp. 2515–2520, IEEE, 2006.

[23] Y.-H. Chang, C.-Y. Yang, W.-S. Chan, H.-W. Lin, and C.-W. Chang, “Adap-

tive fuzzy sliding-mode formation controller design for multi-robot dynamic

systems,” International Journal of Fuzzy Systems, vol. 16, no. 1, p. 121, 2014.

[24] A.-M. Zou and K. D. Kumar, “Neural network-based adaptive output feedback

formation control for multi-agent systems,” Nonlinear Dynamics, vol. 70, no. 2,

pp. 1283–1296, 2012.

[25] Y.-H. Chang, W.-S. Chan, C.-Y. Yang, C.-W. Chang, and T.-C. Chung, “De-

sign of adaptive neural fuzzy formation controller for multi-robot systems,” in

American Control Conference (ACC), 2012, pp. 3161–3166, IEEE, 2012.

[26] M. A. Lewis and K.-H. Tan, “High precision formation control of mobile robots

using virtual structures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997.

[27] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coor-

dinated control of groups,” in Decision and Control, 2001. Proceedings of the

40th IEEE Conference on, vol. 3, pp. 2968–2973, IEEE, 2001.

[28] A. Kahn, J. Marzat, and H. Piet-Lahanier, “Formation flying control via el-

liptical virtual structure,” in Networking, Sensing and Control (ICNSC), 2013

10th IEEE International Conference on, pp. 158–163, IEEE, 2013.

[29] Y. Liu and Y. Jia, “An iterative learning approach to formation control of

multi-agent systems,” Systems & Control Letters, vol. 61, no. 1, pp. 148–154,

2012.

102

BIBLIOGRAPHY

[30] K. L. Moore, M. Dahleh, and S. Bhattacharyya, “Iterative learning control: a

survey and new results,” Journal of Robotic Systems, vol. 9, no. 5, pp. 563–594,

1992.

[31] A. Krontiris, S. Louis, and K. E. Bekris, “General dynamic formations for

non-holonomic systems along planar curvilinear coordinates,” in Robotics and

Automation (ICRA), 2011 IEEE International Conference on, pp. 4903–4908,

IEEE, 2011.

[32] C. B. Low, “A flexible virtual structure formation keeping control design

for nonholonomic mobile robots with low-level control systems, with experi-

ments,” in Intelligent Control (ISIC), 2014 IEEE International Symposium on,

pp. 1576–1582, IEEE, 2014.

[33] K. H. Kowdiki, R. K. Barai, and S. Bhattacharya, “Leader-follower formation

control using artificial potential functions: A kinematic approach,” in Advances

in Engineering, Science and Management (ICAESM), 2012 International Con-

ference on, pp. 500–505, IEEE, 2012.

[34] M. A. Kamel and Y. Zhang, “Decentralized leader-follower formation control

with obstacle avoidance of multiple unicycle mobile robots,” in Electrical and

Computer Engineering (CCECE), 2015 IEEE 28th Canadian Conference on,

pp. 406–411, IEEE, 2015.

[35] D. Zermas, “Control of a leader-follower mobile robotic swarm based on the

nxt educational lego platform,” in Industrial Electronics (ISIE), 2011 IEEE

International Symposium on, pp. 1381–1386, IEEE, 2011.

[36] G. Klančar, D. Matko, and S. Blažič, “Mobile robot control on a reference

path,” in Intelligent Control, 2005. Proceedings of the 2005 IEEE International

Symposium on, Mediterrean Conference on Control and Automation, pp. 1343–

1348, IEEE, 2005.

[37] L. Shi-Cai, T. Da-Long, and L. Guang-Jun, “Robust leader-follower forma-

tion control of mobile robots based on a second order kinematics model,” Acta

Automatica Sinica, vol. 33, no. 9, pp. 947–955, 2007.

[38] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor,

“A vision-based formation control framework,” Robotics and Automation, IEEE

Transactions on, vol. 18, no. 5, pp. 813–825, 2002.

103

BIBLIOGRAPHY

[39] J. P. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of multiple

mobile robots,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE

International Conference on, vol. 4, pp. 2864–2869, IEEE, 1998.

[40] G. L. Mariottini, G. Pappas, D. Prattichizzo, and K. Daniilidis, “Vision-based

localization of leader-follower formations,” in Decision and Control, 2005 and

2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on,

pp. 635–640, IEEE, 2005.

[41] J. Yuan, “A feedback linearization based leader-follower optimal formation con-

trol for autonomous underwater vehicles,” Advances in Computer Science and

its Applications, vol. 1, no. 1, pp. 45–48, 2012.

[42] Y. Dai and S.-G. Lee, “The leader-follower formation control of nonholonomic

mobile robots,” International Journal of Control, Automation and Systems,

vol. 10, no. 2, pp. 350–361, 2012.

[43] M. Farrokhsiar and H. Najjaran, “An unscented model predictive control ap-

proach to the formation control of nonholonomic mobile robots,” in Robotics

and Automation (ICRA), 2012 IEEE International Conference on, pp. 1576–

1582, IEEE, 2012.

[44] D. Zhao, T. Zou, S. Li, and Q. Zhu, “Adaptive backstepping sliding mode con-

trol for leader–follower multi-agent systems,” IET control theory & applications,

vol. 6, no. 8, pp. 1109–1117, 2012.

[45] O. Mohareri, R. Dhaouadi, and A. B. Rad, “Indirect adaptive tracking control

of a nonholonomic mobile robot via neural networks,” Neurocomputing, vol. 88,

pp. 54–66, 2012.

[46] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking

control method for an autonomous mobile robot,” in Robotics and Automa-

tion, 1990. Proceedings., 1990 IEEE International Conference on, pp. 384–389,

IEEE, 1990.

[47] H. A. Poonawala, A. C. Satici, N. Gans, and M. W. Spong, “Formation con-

trol of wheeled robots with vision-based position measurement,” in American

Control Conference (ACC), 2012, pp. 3173–3178, IEEE, 2012.

[48] Z. Peng, G. Wen, and A. Rahmani, “Leader-follower formation control of mul-

tiple nonholonomic robots based on backstepping,” in Proceedings of the 28th

Annual ACM Symposium on Applied Computing, pp. 211–216, ACM, 2013.

104

BIBLIOGRAPHY

[49] X. Li and J. Xiao, “Robot formation control in leader-follower motion using

direct lyapunov method,” International Journal of Intelligent Control and Sys-

tems, vol. 10, no. 3, pp. 244–250, 2005.

[50] Z.-P. JIANGdagger and H. Nijmeijer, “Tracking control of mobile robots: a

case study in backstepping,” Automatica, vol. 33, no. 7, pp. 1393–1399, 1997.

[51] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust mapping

and localization in indoor environments using sonar data,” The International

Journal of Robotics Research, vol. 21, no. 4, pp. 311–330, 2002.

[52] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile robot

with a 3d laser range finder for 3d exploration and digitalization of indoor

environments,” Robotics and Autonomous Systems, vol. 45, no. 3, pp. 181–198,

2003.

[53] C. Holzmann and M. Hochgatterer, “Measuring distance with mobile phones

using single-camera stereo vision,” in Distributed Computing Systems Work-

shops (ICDCSW), 2012 32nd International Conference on, pp. 88–93, IEEE,

2012.

[54] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An

evaluation of the rgb-d slam system,” in Robotics and Automation (ICRA),

2012 IEEE International Conference on, pp. 1691–1696, IEEE, 2012.

[55] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image un-

derstanding, vol. 68, no. 2, pp. 146–157, 1997.

[56] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(surf),” Computer vision and image understanding, vol. 110, no. 3, pp. 346–359,

2008.

[57] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the

study of distributed multi-agent coordination,” Industrial Informatics, IEEE

Transactions on, vol. 9, no. 1, pp. 427–438, 2013.

[58] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of Fluids Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[59] S. Chen, “Kalman filter for robot vision: a survey,” Industrial Electronics,

IEEE Transactions on, vol. 59, no. 11, pp. 4409–4420, 2012.

105

BIBLIOGRAPHY

[60] Q. Gan and C. J. Harris, “Comparison of two measurement fusion methods for

kalman-filter-based multisensor data fusion,” Aerospace and Electronic Systems,

IEEE Transactions on, vol. 37, no. 1, pp. 273–279, 2001.

[61] “Openkinect documents.” http://openkinect.org/wiki/Documentation. Ac-

cessed: 2015:10:01.

[62] “Primesense 3d sensors.” http://www.i3du.gr/pdf/primesense.pdf. Accessed:

2015:10:01.

[63] “Kinect 1 vs. kinect 2.” https://channel9.msdn.com/coding4fun/kinect/Kinect-

1-vs-Kinect-2-a-side-by-side-reference. Accessed: 2015:10:01.

[64] “Texas instraments.” http://www.ti.com/lit/ds/symlink/lm2940c.pdf. Ac-

cessed: 2015:10:01.

[65] M. Nosrati, R. Karimi, and M. Hariri, “Detecting circular shapes from areal

images using median filter and cht,” Global Journal of Computer Science and

Technology, vol. 12, no. 2, 2012.

[66] E. Wan, R. Van Der Merwe, et al., “The unscented kalman filter for nonlinear

estimation,” in Adaptive Systems for Signal Processing, Communications, and

Control Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153–158, IEEE, 2000.

[67] G. Dudek and M. Jenkin, Computational principles of mobile robotics. Cam-

bridge university press, 2010.

[68] “irobot.” http://www.irobot.com/filelibrary/create/CreateManualFinal.pdf.

Accessed: 2015:10:01.

[69] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[70] J.-H. Park, Y.-D. Shin, J.-H. Bae, and M.-H. Baeg, “Spatial uncertainty model

for visual features using a kinect sensor,” Sensors, vol. 12, no. 7, pp. 8640–8662,

2012.

106

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Background of this study
	Objectives of this study
	Problems to be investigated
	Significance of this study

	Scope and Limitations
	Plan of development

	Literature Review
	Introduction
	Robotic Vehicles
	Formation Control Motivation
	Formation Control Architectures
	Behavioural mention artificial potentials
	Virtual Structure

	Leader-follower
	Control Schemes
	State estimation and Sensors

	Literature Conclusion

	System Overview and Design
	System Overview
	Robot Operating Software
	System Design
	Hardware/Mechanical
	Software

	Image Processing Algorithm Design
	Preprocessing Investigation
	Leader Measurement
	Landmark Measurement

	Final Algorithm
	Optimisation

	Control Design
	System Modelling
	iRobotCreate's Dynamics
	Leader-follower Formation Dynamics

	Controller Selection
	Localisation
	Follower pose state
	Leader-follower relative state

	Final Design Overview and Experimental Methodology
	Final Design Overview
	Experimental Methodology
	Simulations
	Implementation

	Simulation Experiments
	Controller
	State Estimators
	Follower Pose Estimators
	Leader Pose Estimator

	Final Control System

	Implementation Results
	Zero desired polar angle with stationary leader
	In line start
	Angle offset start

	Zero desired polar angle with moving leader
	In line start
	Angle offset start

	Non Zero desired polar angle
	=10 with stationary leader
	=10 with moving leader

	Discussion
	Image Processing Algorithm
	State Estimators
	Follower' Pose Estimate
	Relative Coordinate State's Estimate

	Formation Control
	Comparison to literature results
	Final System
	Fulfilment of primary objectives
	Fulfilment of secondary objectives

	Conclusions
	Primary Objectives
	Secondary Objectives

	Software Design
	Control
	Motion Model Theory
	Sensor Model Theory
	Actuator and Sensor Noise Model
	State Transition Measurement
	Vision Measurement of State

	Controller Proof
	Kalman Filtering

	Simulation Results
	Implementation Results
	Zero desired polar angle with stationary leader
	In line start
	Angle offset start

	Zero desired polar angle with moving leader
	In line start
	Angle offset start

	Desired polar angle = 10
	Stationary leader
	Moving leader

	References

